
1 July 1998 Delphi Informant

July 1998, Volume 4, Number 7

Delphi 4 Hits the Road
Distributed Programming Goes RAD

Cover Art By: Tom McKeith

ON THE COVER
5 Delphi 4 � Cary Jensen, Ph.D.
Delphi 4 is here, and it’s loaded with new features, including: new
keywords, remote debugging, improved COM support, and support for
CORBA, Microsoft Transaction Server, Windows NT Services, and much
more. And you thought there was no way to make it better.

FEATURES
11 On the ’Net
WinSock 2: Part II � John Penman
Mr Penman continues his series with a look at WinSock 2 multi-
threading. Using an SFTP application as an example, he shares all the
code to construct a client and server.

18 Sound+Vision
Palettes Made Plain � Ray Lischner
Ironically, an intrinsically visual aspect of Windows — palettes — is
usually made transparent to Delphi developers. Mr Lischner explains
what to do when palette problems become all too visible.

24 Distributed Delphi
COM Callbacks: Part II � Binh Ly
Quite simply, connection points are an important part of the way
Windows works. Mr Ly demonstrates how to build on native Delphi 3
classes to implement Connectable Objects.

28 The API Calls
Delphi and TAPI: Part I � Major Ken Kyler and
Alan C. Moore, Ph.D.
Major Kyler and Dr Moore begin their Telephony API series with a
detailed introduction of the basic TAPI functions, and a demonstration
of how to use them to initiate and manage phone calls.

REVIEWS
38 Propel

Product Review by Alan C. Moore, Ph.D.

DEPARTMENTS
2 Delphi Tools
4 Newsline
43 From the Trenches by Dan Miser
44 File | New by Alan C. Moore, Ph.D.

2 July 1998 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Extended Systems Announces Advantage Database Server 5.0

Extended Systems, Inc.

announced Advantage
Database Server 5.0, a scal-
able DBMS that brings
client/server benefits to
mobile, network, and
Internet database applica-
tions.
Wise Solutions Announ
System 6.0

Moss Micro Announces
Enhancements to
Advantage Database Server
5.0 include Read Ahead
Record Caching, which
reduces network traffic by
reading future records and
server-based optimized
(bitmapped) filters. In addi-
ces Wise Installation

 ActiveSales 3.0
tion, the composite proto-
cols feature combines certain
protocols that previously
occurred back-to-back.

Developers currently using
the Advantage Database
Server can use the snap-in fea-
tures to instantly see increased
performance without any
application re-writes or
changes to existing hardware.
The Advantage Management
APIs allow developers to
incorporate server manage-
ment functionality into cur-
rent applications. A separate
Management Utility that can
be run from anywhere on the
network is provided.

Advantage client libraries
(sold separately as Advantage
Client Kits) can replace exist-
ing database drivers with fully
compatible Advantage dri-
vers. Advantage Client Kits
feature a native component
solution for Delphi 1, 2, and
3 and C++Builder.

Extended Systems, Inc.
Price: From US$249 for two-user ver-
sion to US$7,495 for 1,000-user ver-
sion. Advantage Client Kit prices range
from US$99 to US$299.
Phone: (800) 235-7576 ext. 5030
Web Site: http://www.advantage-
database.com
Wise Solutions, Inc.
announced the availability of
Wise Installation System 6.0, a
distribution/deployment tool
for Windows-based applica-
tions. Wise Installation System
provides the ability to create a
single file that will install one
or many applications at the
same time. Version 6.0
includes functionality that
reduces the time needed to
create installations and distrib-
ute them to end-user desk-
tops. Version 6.0 also includes
updates to the Installation
Expert that includes Wise’s
Click-and-Script technology.
It also offers FoxPro, ODBC
3.0, and BDE 4.51 support in
its run-time options.

Wise Installation System 6.0
is available as a stand-alone
product or as part of the Wise
Installation System Enterprise
Edition, which includes
SmartPatch, WebDeploy, and
SetupCapture technologies.
SmartPatch updates software
applications by creating an
installation that only includes
changes from the previous
version of the software.
WebDeploy allows users to
install applications on their
desktops with a single click
from an Internet/intranet site.
SetupCapture allows users to
automate installations by cre-
ating a Wise version of an
existing installation.

In addition, Enterprise
Edition includes an integrated
debugger for analyzing com-
plicated installations.

Wise Solutions, Inc.
Price: Stand-alone version, US$299;
Enterprise Edition, US$699.
Phone: (800) 554-8565
Web Site: http://www.wisesolutions.-
com
Moss Micro, Inc. announced
ActiveSales 3.0, a closed-loop
sales and marketing informa-
tion system for sales profes-
sionals, sales managers, admin-
istrators, and developers.

Sales professionals can share
contacts, activities, notes,
product interest, and quotes
with sales team members to
optimize sales cycles and close
opportunities. They can access
sales and marketing informa-
tion from Office 97 applica-
tions, and create written cus-
tomer correspondence, elec-
tronic communications, and
information presentations.
Sales managers using
ActiveSales 3.0 can reduce
development and administra-
tive costs of large system
implementations, identify the
indicators of leading sales pro-
fessionals, and use manage-
ment-level views and drill-
down capabilities of customiz-
able, online charts and graphs
that display real-time informa-
tion. Examples are sales cycle
analysis, revenue analysis, terri-
tory analysis, and timeline
opportunities.

Administrators and develop-
ers can reduce development
time with business compo-
nents that can be written in
Delphi, Visual C++, Visual
J++, Java, or Visual Basic.
They can also accelerate and
streamline initial application
roll-out, and accelerate admin-
istrative tasks with compo-
nents that maintain critical
information, including prod-
uct, price list, competitor, user,
exchange rate, language, terri-
tory, and security information.

Moss Micro, Inc.
Price: ActiveSales client, US$2,500;
ActiveSales server, US$25,000.
Phone: (800) 608-6585
Web Site: http://www.mossmicro.com

http://www.wisesolutions.com
http://www.wisesolutions.com
http://www.advantagedatabase.com
http://www.advantagedatabase.com
http://www.mossmicro.com

3 July 1998 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

American Cybernetics Announces Multi-Edit 8

American Cybernetics, Inc.

announced Multi-Edit 8, the
company’s programming text
editor. Multi-Edit 8 features
32-bit performance, an
improved interface, tabbed
access to editing windows,
and a Results window that
keeps dialogs and results
accessible in a tabbed pane.

Internet programming fea-
tures in Multi-Edit 8 support
HTML with embedded
scripts, such as JavaScript and
VBScript. It also supports
PERL, Java, and other
Internet languages. Multi-
Edit 8 offers project and site
management tools, which
include built-in FTP func-
tions.

Developers can keep Multi-
Edit and their IDEs in sync
with IDE Integration for
Delphi, C++Builder, and
Devont Ships NWLib

ZieglerSoft Releases Zieg
Watcom C/C++. Programmers
can switch between Multi-Edit
and their IDE, with both
environments reflecting
editing changes.
lerCollection one
American Cybernetics, Inc.
Price: US$129 for new users; US$69
to upgrade.
Phone: (800) 899-0100
Web Site: http://www.multiedit.com
ZieglerSoft announced the
availability of ZieglerCollection
one, a collection of Delphi
16/32-bit components.

ZieglerCollection one offers
functions, procedures, and
components not provided in
Delphi. The collection
includes TzMinMax,
TzBigLabel, Tz3DLabel,
TzAngleLabel, TzTabListBox,
TzBlendPaint, TzTileMap,
TzLed, TzSegmentClock,
TzGauge, TzSlideBar,
TzFrame, TzMovePanel,
TzTitleBar, TzHint,
TzVerSpilt, TzHorSplit,
TzMouseSpot, TzCalc,
TzColorBtn, TzPanelMeter,
and many more.
ZieglerCollection one comes
with source code and is avail-
able for all versions of Delphi
and version 1 of C++Builder.

ZieglerSoft
Price: US$52 for e-mail version; US$73
for diskette version.
Phone: +45 9811 3772
Web Site: http://www.zieglersoft.com
Devont Software, Inc.
shipped NWLib, a collection
of Netware-aware visual con-
trols for Delphi and
C++Builder. NWLib allows
developers to drag and drop
visual controls to integrate
Netware services into their
applications.

In addition to the visual con-
trols that integrate Netware
facilities, such as user lists,
print queue and job manage-
ment, NDS object browsing,
and Bindery object manage-
ment, NWLib offers over 200
functions that turn complex
operations into a single line of
code. The entire Netware API
is covered, from obtaining
user connection information
to creating NDS objects and
extending the NDS Schema.
Devont Software, Inc.
Price: Standard Edition, US$95;
Enterprise Edition, US$225.
Web Site: http://www.devont.com

http://www.multiedit.com
http://www.zieglersoft.com
http://www.devont.com

4 July 1998 Delphi Informant

News
L I N E

Ju l y 1998

Borland Becomes INPRISE Corporation

Ensemble Systems Links Rational Rose to Delphi
and JBuilder

VisiBroker Surpasses 30
Million Licenses

INPRISE announced that deployed
licenses for its VisiBroker ORB

(Object Request Broker) surpassed
30 million in 1997. Industry part-

nerships with Oracle, Hitachi,
Novell, Netscape, Informix, Silicon
Graphics, and others have been
attributed with VisiBroker’s suc-

cess. INPRISE’s partners use
VisiBroker for Java and VisiBroker
for C++ to provide support for

CORBA (Common Object Request
Broker Architecture) and CORBA’s
Internet Inter-ORB Protocol (IIOP)

in their product lines.
San Francisco, CA —
Reflecting its growing focus on
enterprise computing, Borland
International, Inc. announced
a new corporate name,
INPRISE Corp. INPRISE
combines Borland’s heritage of
development environments
with object component tech-
nology to help customers
develop, deploy, and manage
distributed enterprise applica-
tions. INPRISE plans to con-
tinue to use the Borland brand
name in association with its
family of application develop-
ment tools.

Several factors, including
growth and profitability in
enterprise distributed comput-
ing markets; integration of
Visigenic Software, Inc.;
growing partnerships with sys-
tem integrators, such as
Arthur Andersen, Cambridge
Technology Partners, Cap
Gemini, Compuware, EDS,
and others; and business rela-
tionships with enterprise IT
suppliers, such as IBM, Sun
Microsystems, SAP, Oracle,
Hitachi, Netscape, Novell,
INPRISE Introduces AppC
and Microsoft, were elemental
to the shift in the company’s
focus and direction.

INPRISE unveiled ele-
ments of the company’s
strategy for delivering end-
to-end solutions, including
the Inprise Application
Server, designed to provide
a complete solution for sim-
plifying the development,
deployment, and manage-
ment of middle-tier busi-
ness logic in a distributed
application environment.
enter

INPRISE to Expand Resea
Activities in Singapore
INPRISE also outlined plans
for providing middleware
bridges that allow applications
based on existing distributed
architectures to interact with
the Inprise Application Server.

Other elements of
INPRISE’s strategy include
strengthened sales organiza-
tion and the expansion of
technical support, training,
and consulting services
operations worldwide.

For more information, visit
http://www.inprise.com.
Richmond, BC, Canada —
Ensemble Systems, Inc.
announced that Delphi and
JBuilder developers can inte-
grate object modeling and
round-trip engineering with
Rational Rose, using
Ensemble’s Rose Delphi
Link (RDL) and Rose
JBuilder Link (RJBL).
Ensemble cooperated with
INPRISE and Rational
Software Corp. as a technol-
ogy partner under the
Rational Rose Link Program
to develop RDL and RJBL.

Using Rational Rose 98,
Delphi and JBuilder develop-
ers can develop object-oriented
software design, then generate
the code framework for the
system using RDL or RJBL.
Developers can then complete
the implementation with
Delphi or JBuilder.

For partially or fully devel-
oped systems, RDL and
RJBL’s round-trip engineering
capabilities allow developers
to access the existing code to
produce an up-to-date model
of the system in Rose.

Trial versions of Rose
Delphi Link and Rose
JBuilder Link are available
from Ensemble’s Web site at
http://www.ensemsys.com.
rch and Development
Scotts Valley, CA —
INPRISE announced
AppCenter, an enterprise
application management tool
that enables corporations to
model, monitor, and manage
their distributed applica-
tions. AppCenter will initial-
ly support applications built
with Entera, INPRISE’s
RPC-based middleware, with
support for CORBA and
DCOM applications
planned for later this year.

AppCenter allows corporate
development and operations
teams to deploy and manage
large-scale, mission-critical
applications. It features a Java-
based user interface, which
provides the capabilities to
create and configure new
applications, as well as manage
and monitor existing ones.
AppCenter supports the IBM

AIX, Sun Solaris, HP-UX, and
Windows NT platforms.

For more information, visit
http://www.inprise.com/-
appcenter/.
Singapore — INPRISE
announced plans to expand
its research and develop-
ment activities in
Singapore. The new initia-
tives, supported through a
grant from Singapore’s
National Science and
Technology Board (NSTB),
will focus on the develop-
ment of localized versions
of INPRISE’s enterprise
products, as well as versions
of INPRISE’s intelligent
middleware for additional
computing platforms.

The NSTB is the driving
force behind Singapore’s
effort to advance long-
term economic growth.
Established by the
Singapore government in
1991, the NSTB is a statu-
tory board under the
Ministry of Trade and
Industry.

http://www.inprise.com
http://www.inprise.com/appcenter/
http://www.inprise.com/appcenter/
http://www.ensemsys.com

Delphi 4
The New Version Focuses on Ease-of-Development and
Distributed Computing

On the Cover
Delphi 4

By Cary Jensen, Ph.D.

Figure 1: Delphi 4 sports

5 July 1998 Delphi Informant
Each new version of Delphi has presented developers with an impressive host
of new features and enhancements. Delphi 4 is no exception. In this latest

version, INPRISE (nee Borland) has managed to add something for everyone.
From the bread-and-butter application developer, to the component designer,
the new features of Delphi 4 make this a “must have” upgrade.
a

In a very real sense, every aspect of Delphi
has been touched. The most obvious changes
are those to the development interface,
including the new look of the main window
and Code Editor. Other, not so apparent
changes, permeate the entire product, from
additions to the TObject class (the base class
for all objects in Object Pascal), to major
enhancements to the Object Pascal language.

This first look at Delphi 4 is intended as an
overview of the new and improved features of
this latest version. Keep in mind, however,
that this article is based on a pre-release ver-
sion of this product. Consequently, there is
 new-look IDE that includes tear-away toolbars.
always a possibility that a feature described
here may not ultimately make it into Delphi
4, or may not work as described. On a simi-
lar note, not all of these features will appear
in all versions of Delphi 4. Specifically,
MIDAS (Multi-tier Development
Application Services) enhancements will be
found only in Client/Server and Enterprise
editions, while other features, such as the
IDE (Integrated Development Environment)
facelifts, are destined for all versions.

IDE Changes
Upon loading Delphi 4 for the first time,
there’s no question you’re using an updated
product. As shown in Figure 1, the main
window sports a new organization of the
speedbuttons, Component palette, and
menu. Each of these elements are contained
within tear-away toolbars, which permits you
to reposition them within the main window,
or even tear them off to create floating tool-
bars. Even Delphi’s main menu can be
enabled as a floating toolbar.

Displaying the Editor reveals the next major
IDE enhancement. As shown in Figure 2, the
Editor window now consists of two parts: the
Module Explorer and the Code Editor. The
Module Explorer provides an overview of the
symbols in the unit displayed in the Code
Editor. Furthermore, double-clicking an icon
in the Module Explorer takes you to the rele-
vant code declaration in the associated unit.

On the Cover
You can press CSE to quickly navigate between the
Module Explorer and Code Editor.

At first you might be alarmed about the space consumed by
the Module Explorer. This is not a concern, however, as the
Module Explorer (like many of the other windows in Delphi
4), can be dragged out of its docked location within the
Editor window and either docked into another window, or
left as a floating window. For example, if you prefer, you can
dock the Object Inspector and the Module Explorer together
in a single Tools window.

In addition to obvious physical changes in the Editor win-
dow, Delphi 4 provides three major new features that add
convenience to your code-writing efforts: Class
Completion, Method Navigation, and the Code Browser.

Class Completion. Class Completion is useful for anyone
who regularly declares new methods and properties in class
type declarations. Based on a method declaration you enter
into your class type declaration, Class Completion generates a
method implementation in the corresponding implementa-
tion section of your unit.

For example, enter the following method declaration into the
type declaration for a class named TOrder :

function IsValid(NewValue: Integer): Boolean;

Next, invoke Class Completion by pressing CSC.
Delphi responds by generating the following method stub in
the implementation section of the unit:

function TForm1.IsValid(NewValue: Integer): Boolean;

begin

end;

Likewise, when entering a property declaration, Code
Completion will generate a write access method, a field for
the storage of the property, and implement the write access
method where it assigns the write access method’s Value para-
6 July 1998 Delphi Informant

Figure 2: The Editor window initially contains both the Module Expl
and Code Editor.
meter to the generated field. For example, consider the fol-
lowing class declaration where a property name and type have
been entered:

type
TForm1 = class(TForm)
private

{ Private declarations }
public

{ Public declarations }
property Order: Integer;

end;

If you press CSC while your cursor is still in the
class declaration, Class Completion will modify the type
declaration as follows:

type
TForm1 = class(TForm)
private

FOrder: Integer;

procedure SetOrder(const Value: Integer);

{ Private declarations }
public

{ Public declarations }
property Order: Integer read FOrder write SetOrder;

end;

In addition, it will add the following implementation of the
write access method to the unit’s implementation section:

procedure TForm1.SetOrder(const Value: Integer);

begin
FOrder := Value;

end;

Class Completion can be used on single method or property
declarations, or on an entire class declaration. That is, if you
enter multiple method and/or property declarations into a
class declaration, pressing CSC will generate all the
necessary declarations and implementations in a single step.

Method Navigation. Method Navigation permits you to
quickly navigate to the various parts of your method declara-
tions. For example, if your cursor is positioned on a method
declaration in a type declaration, pressing CSb will

reposition your cursor in the method’s implementa-
tion.
orer
Similarly, from a method implementation, press
CSt to quickly move to the method decla-
ration in the appropriate class declaration.

Code Browser. The Code Browser permits you to
quickly open the unit in which a particular symbol
is declared, or to open a unit listed in a uses
clause. To use the Code Browser, press C with
the mouse pointer over a declaration. After a brief
pause, the mouse pointer will change to a hand
shape, and the symbol will be underlined. Then,
if you click the symbol (keeping C depressed),
the Code Browser opens the unit associated with
the symbol in the Code Editor. For example,
while holding C down, move your mouse over

On the Cover
the TForm reference in a class declaration, as shown in
Figure 3. Once the word TForm appears underlined, click
it to load the Forms unit in the Code Editor and position
the cursor at the TForm declaration.
Figure 3: The Code Browser permits you to quickly view units
associated with symbols in your code.

Figure 4: The new Project Manager permits you to manage pro-
jects as well as project groups.

Figure 5: The Debugger Options dialog box permits you to config-
ure the event log, as well as define how exceptions are handled.

7 July 1998 Delphi Informant
Project Manager. Another addition to Delphi 4’s IDE is an
improved Project Manager. The Project Manager has been
enhanced to permit you to group two or more projects togeth-
er. This feature is especially useful when the projects are relat-
ed. For example, you may have a project that defines a DLL,
and another an EXE that calls the DLL. Using a project group,
you can conveniently manage these two projects together.

Furthermore, a project group permits you to quickly and easi-
ly navigate between the various modules of any projects in the
group. Even when the Project Manager is used for a single
project, its tree view displays the various units and form files
of your project. Simply double-click a unit or form in the
Project Manager to view it. The new Project Manager is
shown in Figure 4.

Form designer. The designer has also been improved to pro-
vide you with additional help while designing forms, data
modules, etc. For example, simply pause your mouse over an
object to see its name and class displayed in a floating help
window. In addition, anytime you resize an object, a floating
window appears and displays the object’s width and height,
and during a drag operation, the window displays the object’s
top-left coordinates.

Debugger. Even bigger enhancements are found in the tools you
use for code debugging. The biggest of these is the Event Log, a
window that you configure to trace events during program exe-
cution, including process loading and termination, breakpoint
messages, and windows messages. Furthermore, using the
Debugger Options dialog box (see Figure 5), you can control
how individual exceptions are handled.

Two windows previously available for debugging are now
improved. The CPU window, which was only available if you
added the appropriate Windows registry entry, is now a stan-
dard part of the debugger. In addition, it has been enhanced
significantly to provide additional information not previously
shown, including the contents of the CPU registers. An
example of how the new CPU window looks while a project
is running is shown in Figure 6.

Likewise, the module window has been enhanced to include
the source code paths for loaded modules (binary executables
such as EXEs and DLLs). Another pane in the module win-
dow lists module function entry points, as well as global sym-
bols if the module was compiled with debug information.

Object Repository. Another area within the IDE with
extensive enhancements is the Object Repository. Here you
will find a number of valuable new Wizards, including the
Project Group Wizards, a Resource DLL Wizard, an MTS
Data Module Wizard, a Service Wizard, a Service
Application Wizard, and a CORBA Data Module Wizard.
These Wizards are shown in Figure 7, which displays the
New page of the Delphi 4 Object Repository. Note that
because of the number of new Wizards, not all Wizards on
the New page of the Object Repository appear in Figure 7.
To access the Web Server Module Wizard, for example,

8 July 1998 Delphi Informant

Figure 6: The new CPU window contains information not previously
available for debugging.

Figure 7: Delphi 4 introduces a large number of new Wizards, includ-
ing those for CORBA and Microsoft Transaction Server.

Figure 8: A master-detail relationship displayed using a docked win-
dow for detail records.

On the Cover
you will need to scroll within the New page of the
Object Repository.

VCL Changes
Numerous changes have been made to the Delphi 4
VCL (Visual Component Library). Among these are
the TActionList component, which simplifies the
process of synchronizing labels, bitmaps, and event
handlers across buttons and menus.

Internet components. In addition, the Component
palette’s Internet page now includes a large number of
new Internet-related components based on the Net
Masters Fastnet tools. While additional information on
these components was not available at the time of this
writing, these new components appear to be entirely
Object Pascal-based, as opposed to being ActiveX controls
like the NetManage Internet controls available in earlier
versions of Delphi. Consequently, these controls make it
much easier to deploy Internet-based applications.

Object enhancements. Besides the new components,
there have been some significant updates to the object
hierarchies in Delphi 4. For example, the TObject class
now includes AfterConstruction and BeforeDestruction
methods, both of which are protected. Since every
object in Delphi inherits these methods, object devel-
opers now have these two additional methods that they
can override, if necessary, to provide for more effective
component creation and release.

In addition, both the TControl and TWinControl
classes now support drag-and-dock operations. Any
TWinControl descendant can be designed to be a
potential dock site. Likewise, any TControl descendant
can be configured to be dockable. Among other uses,
with these features you can let a user dock one win-
dow within another, similar to the docking provided
within Delphi’s IDE. For example, in a database
application you may display customer information on
one form, and the sales to that customer in another
(these sales constitute detail records associated with
the selected customer in the customer form). If you
want, you can design these forms so the sales detail
form can be docked into the customer master form.
An example of such a relationship created with Delphi
4 is shown in Figure 8.

Another feature introduced into the object hierarchy at
the TControl level is the Constraints property. This prop-
erty permits you to define maximum and minimum
dimensions for a control, as well as to define vertical and
horizontal anchor points. One purpose for the
Constraints property would be to prevent an aligned con-
trol from becoming so small that a contained control is
hidden. The TControl class also enhances the AutoSize
property for some descendants, so that re-scaling opera-
tions apply to both component size as well as contained
font properties.

Figure 9: The new SQL Builder simplifies the process of creating SQL

On the Cover
If you need to create ActiveX controls, you’ll be glad to learn
that ActiveX support has also been improved. The ActiveX
controls you create with Delphi 4 can now include Visual
Basic data interfaces.

Database Enhancements
Delphi’s data access components have been improved to support
features new to the latest release of the Borland Database Engine
(BDE). These include improved support for Access 97 and sup-
port for Oracle 8 extensions to SQL, including ADTs (Abstract
Data Types), arrays, references, and nested tables. Even the
ClientDataSet class has been improved. While many of these
improvements apply to MIDAS applications, other improve-
ments have been introduced to make this component even bet-
ter suited for those stand-alone applications that don’t use the
BDE. For example, the ClientDataSet class now supports a
wider range of filter expressions, as well as maintained aggregates
(Sum, Count, Average, and so forth).

Another big enhancement specific to database develop-
ment is the inclusion in the Client/Server edition of the
new SQL Builder, which replaces the Query Builder pro-
vided in earlier versions. SQL Builder provides a more
intuitive interface for building SQL queries, and simplifies
the process of defining selection criteria, groupings, sorts,
joins, and aggregates (see Figure 9).

Multi-tier Enhancements
One of the major additions to Delphi 3 was support for multi-
tier application development. As you can imagine, with
INPRISE’s commitment to enterprise computing, this area of
Delphi received a great detail of additional attention. Delphi 4
provides even more control over distributed applications using
OLE Enterprise and DCOM (Distributed Component Object
Model) technologies. In addition, Delphi 4 provides support for
both CORBA (Common Object Request Broker Architecture)
and MTS (Microsoft Transaction Server) applications, further
extending Delphi’s multi-tier support across the network.

Some specific MIDAS changes include enhancements in
the TClientDataSet class and the related connection classes
9 July 1998 Delphi Informant
on the client side. For example, ClientDataSet
objects can now define parameters that can be
used by the application server, can more easily
refresh and resync with the server, and can more
conveniently use a server’s interface. Also, the
TRemoteServer and TMIDASConnection classes
have been replaced by the TCOMConnection and
TOLEConnection classes, respectively. These class-
es descend from the new TDispatchConnection
class, which defines the common interface for all
connection components. (TRemoteServer and
TMIDASConnection are retained for backward-
compatibility).

Language Enhancements
While not usually the most glamorous to discuss,
language enhancements can be the source of great
added power for developers. And fortunately for

Delphi developers, INPRISE is free to improve Object Pascal
however it likes. (Vendors of tools for other languages, e.g.
C++, are often at the mercy of standards committees whose
constituent members may have conflicting interests.)

In previous versions of Delphi, Object Pascal has gained
some notable additions, including ANSI strings (long
strings) and Interfaces. However, it can be argued that
Delphi 4 introduces more enhancements to the Object
Pascal language than any previous release. These additions
include dynamic arrays, method overloading, default para-
meter values in methods, interface delegation to object
properties, and two new 64-bit data types. Each of these is
discussed briefly in the following section.

Dynamic arrays. A dynamic array is one whose dimensions can
be defined and redefined at run time, without losing data. The
dynamic arrays in Delphi 4 can be multi-dimensional, and the
dynamic nature of these arrays allows for non-rectangular
matrices. For example, the first dimension of a two-dimension-
al array can be an array of 100 elements, while the second
dimension can be an array of five elements. Additional support
is provided for copying dynamic arrays.

Method overloading. With the addition of method overloading
to Object Pascal, component developers can now declare two
or more methods to have the same name. The only require-
ment is that all methods with the same name do not have the
same number and types of parameters, and, if the method is a
function method, they must all return a value of the same type.

The advantage of method overloading is that you can cre-
ate two or more methods that perform essentially the same
task, albeit differently (based on the parameter values they
are passed), and retain the same name for consistency. An
obvious example of this is the ability to overload the Create
constructor. In past versions of Delphi, a component with
multiple constructors had to provide different names for
each constructor. For example, the Exception class declares
no less than eight constructors, including Create,
CreateFmt, CreateRes, and so on. Using overloading, it

queries.

On the Cover
would be possible to declare eight different constructors
— all named Create.

When creating overloaded methods, each method with the
same name must be identified by the overload keyword. For
example, the following two constructor declarations are valid
within a single class type declaration:

constructor Create(AOwner: TComponent); overload; override;
constructor Create(AOwner: TComponent; Text: string); overload;

Default parameters. Like overloading, the addition of default
parameters to Object Pascal applies to the declaration of meth-
ods. In Delphi 4, you can define a default value for the last
parameter in a parameter list. (There must be two or more
parameters to use this feature.) When a method declared using
this new syntax is called, the final parameter can be omitted in
the method invocation, in which case the default value is used.
For example, consider the following method declaration:

procedure Run(Enabled: Boolean; Interval: Integer = 1000);

When this method is called, it can be called using either two
parameters, or only the first. When the last parameter is omit-
ted, the value, 1000, is automatically assigned to the formal
parameter interval.

Interface enhancements. Without a doubt, the most impor-
tant language feature introduced in Delphi 3 was interfaces. If
you are versed in using interfaces, you will be pleased to learn
that Delphi 4 provides an additional tool for implementing
and using interfaces in classes. You can now declare a property
of a class to be either a class type that implements an interface,
or an interface type. This is done by following the property
declaration with the new implements directive, followed by an
interface type. Only one property in each class can be declared
to implement a given interface, although a given property may
be declared to implement two or more interfaces.

This is demonstrated in the following type block which
declares a class, TSomeObject, that includes a property that can
reference any object that implements the IDispatch interface:

type
TSomeObject = class(TObject, IDispatch)
private

FOLEObject: IDispatch;

public
property OLEObject: IDispatch read FOLEObject

write FOLEObject implements IDispatch;

// The rest of the class declaration goes here.
end;

As shown in the preceding code example, the class that includes
this property must be declared to implement the interface type
of the property (IDispatch in this case). From within the imple-
mentation of a class that makes use of a property that imple-
ments an interface, a reference to an object that implements that
interface can be assigned to the interface property. This will
cause that implementation to be returned if an instance of the
class containing the property is assigned to another interface ref-
erence, i.e. a variable declared to be other than that interface
type. In the previous code example, an object that implements
10 July 1998 Delphi Informant
the IDispatch interface can be assigned to the OLEObject proper-
ty of an instance of TSomeObject. As a result, if the TSomeObject
instance is subsequently assigned to an interface reference, the
implementation provided by the object assigned to the
OLEObject property will be returned.

As previously mentioned, the property type declared to imple-
ment an interface can be a class type (as opposed to an interface
type), as demonstrated in the preceding example. When the dele-
gate property is a class, the compiler will search methods declared
in the property’s class type to satisfy the interface’s method imple-
ments first, before searching the class in which the delegate prop-
erty is declared. At run time, after the delegate property has been
assigned an instance of its declared class, an instance of the class
containing the delegate property declaration can be assigned to
an interface reference. Subsequent calls to the methods of this
interface using the interface reference may call either methods of
the delegate property’s implementation or method implementa-
tions found in the instance of the class containing the delegate
property, depending on where the compiler discovered the
method implementations.

When the type of an interface delegate property is a class
type, method name resolution can be used to change which
method implementations the compiler will assign to the inter-
face methods. For more information on using interfaces, see
the article “Run-time Type Information” in the June, 1998
issue of Delphi Informant.

New data types. Finally, Object Pascal now defines two new
64-bit data types. The Real type, which was previously 48
bits, is now 64 bits like the Double type. If your code relies
on a 48-bit Real type, Delphi 4 provides you with the:

{$REALCOMPATIBILITY ON}

compiler directive to use the previous Real size.

For reference to very large integers, Object Pascal now sup-
ports the Int64 type, which is a 64-bit signed integer.
Constants declared too large to fit into the 32-bit Integer type
are treated as Int64 integers automatically by the compiler.

Conclusion
As mature as Delphi has become over its three short years, it
is hard to imagine that INPRISE could add much more to
this highly regarded development tool. But as you can see,
Delphi 4 introduces numerous enhancements and new fea-
tures. To put it simply, if you are going to write 32-bit
Windows applications, you should do so with Delphi 4. ∆

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based data-
base development company. He is author of more than a dozen books, includ-
ing Delphi in Depth [Osborne McGraw-Hill, 1996]. He is also a Contributing
Editor of Delphi Informant, and was a member of the Delphi Advisory Board for
the 1997 Borland Developers Conference. For information concerning Jensen
Data Systems’ Delphi consulting and training services, visit the Jensen Data
Systems Web site at http://idt.net/~jdsi. You can also reach Jensen Data
Systems at (281) 359-3311, or via e-mail at cjensen@compuserve.com.

http://idt.net/~jdsi

11 July 1998 Delphi Informant

On the ’Net
Delphi 3 / WinSock 2

By John Penman

WinSock 2
Part II: Multi-threading
I n last month’s article, we introduced the WinSock 2 API (see Delphi
Informant, June 1998). We examined two functions: WSAEnumProtocols

and WSAEnumNameSpaceProviders. With these functions, we created an
application to demonstrate transport protocol independence and name
space providers.
In this article, we’ll create two applications
to demonstrate multi-threading with
WinSock 2 functions: One is a server that
delivers a file on demand; the other is a
client that requests a file. We use a home-
grown protocol that we call Simple File
Transfer Protocol (SFTP) to perform uni-
directional file transfers (from the server to
the client). In spite of the similarity in
their names, the SFTP protocol is not the
same as FTP, because of the following dif-
ferences:

SFTP uses both User Datagram Protocol
(UDP) and Transmission Control Protocol
(TCP), whereas FTP uses TCP only.
SFTP has a much lower overhead than
FTP, because it uses UDP for messages.
FTP uses TCP for both messages and file
transfer.
SFTP has no robust error checking.
SFTP is uni-directional, i.e. the client can
only retrieve a file from the server. FTP is
bi-directional, i.e. the client can upload
and download files from the server.

SFTP, or the Poor Man’s FTP
Before dealing with the WinSock 2 APIs that
drive SFTP, we must explain the protocol in
detail. In brief, here’s the protocol in operation:
1) Server listens on UDP port XXX.
2) Client sends a request to the server

on UDP port XXX.
3) Server replies to the client.
4) Server sends data on TCP port YYY

to the client.
5) Server resumes listening on UDP

port XXX for more requests.
When the server starts, it listens on a UDP
port for a message from the client. UDP is a
connectionless transport protocol that doesn’t
perform any integrity checking on packets of
data in transit; therefore, it has a low over-
head. Packets sent over UDP can either
expire silently, arrive out of order, or become
duplicated. In spite of the limitations, UDP
is a highly efficient protocol for messages. We
must assign a number to the UDP port that
is known to the client. The SFTP client sends
a request message in the following format:

UserName:Password:MachineName:PortNo:FileName

A colon separates each token for easy parsing
by the server. The server then decodes the
message to retrieve the tokens sequentially,
comparing each token with its database. If a
token doesn’t match, the server sends back an
error message. For example, if there is no
match with the UserName token, the server
sends back the following message:

'ERR'

The server does no further processing of the
message, and resumes listening for more
requests. If the UserName token matches, the
server processes the next token, Password.
This process of matching continues until the
message is successfully done, or until there is
a mismatch. On completion, the server sends
an “OK” string that tells the client to prepare
to receive the data on its data port, designat-
ed by the PortNo token.

Figure 1: SFTPClient in the Delphi 3 IDE.

On the ’Net
The data port uses TCP to transfer a file from the server to the
client. Unlike UDP, TCP is a reliable transport protocol that per-
forms error checking and manages data integrity, which is
absolutely essential for data. (Using TCP is like sending registered
mail; you become aware of any problems, such as non-receipt,
when it happens.) After connecting to the data port on the client
side, the server sends a stream of data, which the client stores in a
file. At the end of the data streaming, the server closes its data
port (by closing the socket), signaling to the client to close the file
and data port. We will demonstrate the SFTP protocol from the
client’s perspective.

The Front End
After mastering the essentials of the SFTP protocol, we can
focus on implementing the SFTP client. Figure 1 shows the
SFTPClient in the IDE. Before we request a file, we need to
start WinSock 2. Clicking the Load button initiates the
Start function, which attempts to load WinSock 2. When
WinSock 2 starts running, the SFTPClient application
enables the Get File! button and disables the Load button.
The application does this to prevent the loading of multiple
copies of the WinSock 2 DLL. SFTPClient populates the
edMachineName control by calling the gethostname API to
retrieve the name of the machine. Sometimes a call to
gethostname can fail because there is no name associated with
the machine. In this case, we must enter a fictitious name.

WinSock 2 stays in memory until we click the Close button,
which calls the WinSock 2 API WSACleanUp to unload
WinSock 2.

We use the Edit controls edMachineName, edUserName,
edPassword, edFileName and edPortNo to capture the tokens
we require to build a request message. The edHostName con-
trol stores the name of the server. If edHostName contains no
host name, SFTPClient won’t allow us to proceed. We store
the tokens as fields of the Request record, which we pass to
the thrdMsg thread like this:

thrdMsg := TMsgThrd.Create(Request, TimeOutValue);

We set the time-out in the edTimerSetting control, which we
pass in TimeOutValue to regulate the timer in thrdMsg.
Because we use UDP, it’s possible that a packet can become
lost in transit, so it’s prudent to time-out the application
(otherwise it could wait forever). In contrast to TCP, using
UDP is like sending a letter in the mail, which could become
lost in transit.

Handling Events on a Thread
In the CMsgThrd unit (available for download; see end of
article for details), we derive TMsgThrd from the TThread
class. Before spinning the thread, we use the Create construc-
tor to set up the timer, the request string, the message socket,
and the WinSock 2 events (see Figure 2).

We call the following function to set up a socket for sending
and receiving messages using UDP:
12 July 1998 Delphi Informant
sktMsg := WSASocket(AF_INET, SOCK_DGRAM,

IPPROTO_UDP, nil, 0, 0);

WSASocket is the WinSock 2 version of the socket API,
which has the capability to create an overlapped socket.
Using overlapped sockets may enhance the data through-
put. Under certain circumstances, however, overlapped
sockets may not always work correctly on Windows 95. I
believe the forthcoming Windows 98 implements the
overlapped socket I/O feature correctly. For now, however,
we’ll do without this feature.

As we are not going to use overlapped I/O, we set the last
parameter to zero in WSASocket. The first parameter speci-
fies the address type, the second specifies the use of data-
grams (discrete data packets), and the third specifies the
UDP transport protocol. The fourth parameter is a pointer
to the WSAPROTOCOL_INFO structure (which we
examined in last month’s article), but for the sake of sim-
plicity, we have set this to nil. The fifth and last parame-
ters specify the socket identifier and the socket attribute,
respectively, which we can ignore.

We want a notification whenever we get a reply from the
server. To do this, we create EventMsg and EventData, which
are generic event objects of the type WSAEvent. Then we call
the Win32 API CreateEvent function to get handles to these
event objects:

CreateEvent(lpEventAttributes: PSecurityAttributes;

bManualReset: LongBool;

bInitialState: LongBool; lpName: PChar);

In Delphi, we call the API like this:

EventMsg := CreateEvent(nil, False, False, nil);

We set the first parameter to nil to accept the default secu-
rity settings. The second parameter is False to tell
Windows to reset the event object automatically. The third

On the ’Net

Figure 3: SFTPClient in action.
constructor TMsgThrd.Create(Requests: TRequest;

TimerSetting: Integer);

var
Res: Integer;

begin
inherited Create(True);

FreeOnTerminate := True;

OnTerminate := OnMsgThrdDone;

TimeOutValue := TimerSetting;

Done := False;

// Set the Timer.
ResTimer := TTimer.Create(nil);
ResTimer.Interval := TimeOutValue;

ResTimer.OnTimer := OnTimeOut;

ResTimer.Enabled := False;

// Decode Request record to build the request message.
Request := Requests;

with Request do begin
RequestMsg := ConCat(UserName,':', Password, ':',

MachineName, ':', Port, ':', FileName);

end;
State := stMsg;

// Set up the message socket.
sktMsg := WSASocket(AF_INET, SOCK_DGRAM, IPPROTO_UDP,

nil, 0, 0);
if sktMsg = SOCKET_ERROR then begin

Msg := Concat('Failed to create socket Error ',

IntToStr(WSAGetLastError));

Synchronize(Update);

State := stError;

Done := True;

Exit;

end;

// Create events.
EventMsg := CreateEvent(nil, False, False, nil);
if EventMsg = WSA_INVALID_EVENT then begin

Msg := Concat('Failed to create Message Event. Error ',

IntToStr(WSAGetLastError));

Synchronize(Update);

State := stError;

Done := True;

Exit;

end;
EventData := CreateEvent(nil,False,False,nil);
if EventData = WSA_INVALID_EVENT then begin

Msg := Concat('Failed to create Data Event. Error ',

IntToStr(WSAGetLastError));

Synchronize(Update);

State := stError;

Done := True;

Exit;

end;

// Set up notification.
Res := WSAEventSelect(sktMsg, EventMsg,

FD_READ or FD_WRITE);

if Res = SOCKET_ERROR then begin
Msg := Concat('WSAEventSelect call failed for socket ',

IntToStr(sktMsg), '. Error ',

IntToStr(WSAGetLastError));

Synchronize(Update);

State := stError;

closesocket(sktMsg);

Done := True;

Exit;

end;

// Fire the thread.
Resume;

// Resolve a host name before sending a request message.
Resolve;

end;

Figure 2: The class constructor.
13 July 1998 Delphi Informant
parameter is also False, which sets the EventMsg in a non-
signaled state. As we do not require the event object to
have a name, we set the last parameter to nil. On success,
CreateEvent returns a valid handle. Otherwise, if
CreateEvent returns an invalid value
(WSA_INVALID_EVENT), SFTPClient sets the State
variable to stError and abandons the message thread.

After we set the event objects — EventMsg and EventData —
we must use WSAEventSelect to associate read or write events
with EventMsg on the message socket, sktMsg. This function
is similar to WSAAsyncSelect, but instead of posting a message
to a window, WSAEventSelect sets the associated event object
and records the network event that occurs. We call
WSAEventSelect like this:

Res := WSAEventSelect(sktMsg, EventMsg,

FD_READ or FD_WRITE);

The function associates the EventMsg event object with two
selected network events: FD_READ and FD_WRITE, on a
socket, sktMsg.

Like all WinSock APIs, we must check the result of every
operation. On success, WSAEventSelect returns a zero; other-
wise, it returns SOCKET_ERROR. When this happens,
SFTPClient uses the Synchronize function to display a mes-
sage from the message thread to the user interface. Figure 3
shows SFTPClient in action.

WSAEventSelect doesn’t operate in isolation; it works with
WSAWaitForMultipleEvents and WSAEnumNetworkEvents
(we’ll explore these APIs when we discuss handling net-
work events). Then, we call Resume to fire the thrdMsg
thread, kicking the Execute method into action. The
Execute method has a repeat loop that repeats until
WSAWaitForMultipleEvents returns an event object when a
network event occurs.

On the ’Net
After spinning the thread, we call Resolve to determine
the IP address from Request.HostName. On success, Resolve
calls SendMsg to send the request to the server. On failure,
we exit from the message thread. Resolve doesn’t handle
IP-dotted addresses at all; we would need to add the
gethostbyaddr API to the code.

SendMsg allocates memory to Buff (of type PWSABUF, a
WinSock 2 data structure) to hold the request message in
the Msg variable. The following code fragment shows how
this is done:

try
Buff := AllocMem(SizeOf(Buffers));

Buff.Buf := Buffers;

Buff.Buf := PChar(Msg);

Buff.Len := SizeOf(Buffers);

{ Rest of code follows. }

finally
FreeMem(Buff, SizeOf(Buffers));

end;

As mentioned earlier, we prevent SFTPClient from waiting
forever for a reply that may never come, and we enable the
timer, ResTimer. When the time-out value exceeds, ResTimer
calls its OnTimeOut event handler to shut down the message
thread gracefully.

The API to send the message as a datagram is:

WSASendTo(s: TSocket; lpBuffers: PWSABUF;

dwBufferCount: Integer; lpNumberOfBytesSent: PDWORD;

dwFlags: Integer; lpTo: PSockAddr; iToLen: Integer;

lpOverlapped: POverlapped;

lpCompletionRoutine: PWSAOVERLAPPED_COMPLETION_ROUTINE);

which we call in Delphi like this:

Res := WSASendTo(sktMsg, Buff, BuffCount, @NoBytesSent,

Flags, @HostAddr, Len, nil, nil);

We won’t examine the parameter list in detail, but note that
the Buff parameter contains the request and the HostAddr
parameter contains the address of the server. Because we
aren’t using the overlapped I/O feature, we set lpOverlapped
and lpCompletionRoutine to nil.

Calling WSASendTo triggers a network event, FD_WRITE,
to wake up SAWaitForMultipleEvents. When SFTPClient
receives a reply, it generates a network event, FD_READ,
which notifies WSAWaitForMultipleEvents. The formal defini-
tion of this function is:

WSAWaitForMultipleEvents(cEvents: Integer;

lphEvents: PHandle; fWaitAll: LongBool;

dwTimeOut: Integer; fAlertable: LongBool);

The cEvents parameter specifies the number of events, which
is two (EventMsg and EventData). The second parameter,
lphEvents, points to an array of event object handles. Because
we want immediate notification of an event, we set f WaitAll
14 July 1998 Delphi Informant
to False. As we have no idea of when we get an event notifica-
tion, we set dwTimeOut to WSA_INFINITE. We set the last
parameter, fAlertable, to False, because we have no comple-
tion routine to call when WSAWaitForMultipleEvents returns.
In Delphi, we call the function like this:

WaitStatus := WSAWaitForMultipleEvents(NumEvents,

@EventArray, False, WSA_INFINITE, True);

The API returns whenever an event object becomes signaled
or an error has occurred. We determine the value of
WaitStatus in a case statement:

repeat
WaitStatus := WSAWaitForMultipleEvents(NumEvents,

@EventArray, False, WSA_INFINITE, False);

if State = stError then
Exit;

case WaitStatus of
WSA_WAIT_FAILED: begin
Done := True;

Msg := Concat('WSA_WAIT_FAILED ... Error ',

IntToStr(WSAGetLastError));

Synchronize(Update);

State := stError;

end;
WAIT_IO_COMPLETION: begin

Msg := 'WAIT_IO_COMPLETION...';

Synchronize(Update);

end;
WSA_WAIT_EVENT_0: begin

Msg := 'WSA_WAIT_EVENT_0...';

Synchronize(Update);

HandleSocketEvent;

end;
end;

until Done;

When there is an FD_READ or FD_WRITE event, we call
HandleSocketEvent to handle the network event. The
HandleSocketEvent function calls another WinSock 2 API,
WSAEnumNetworkEvents, to enumerate which network event
has occurred. We call the function like this:

Res := WSAEnumNetworkEvents(sktMsg, EventMsg, @Buffers[0]);

To retrieve the network event, we typecast the Buffers para-
meter with the following statement:

lpNetworkEvents := PWSANETWORKEVENTS(@Buffers[0]);

Then, we de-reference the lpNetworkEvents structure to deter-
mine which network event has occurred:

// Decipher Network events.
with lpNetworkEvents^ do begin

// Is this an FD_READ event?
if (lNetworkEvents and FD_READ) = FD_READ then begin

if iErrorCode[1] = WSAENETDOWN then begin
Msg := 'Network down...';

Synchronize(Update);

end;
Size := SizeOf(HostAddr);

Msg := 'FD_READ...';

{ Rest of code. }

end;
end;

Figure 4: SFTPServer in the IDE.

On the ’Net

Figure 5: SFTPServer in action.
Getting the Goods
We disseminate the Buff parameter to retrieve the message. If
the message contains the “OK” string, we create a new
thread, thrdData, to handle the data transfer:

thrdData := TDataThrd.Create(StrToInt(Request.Port),

Request.FileName);

We pass the port number in the first parameter and the file
name in the second. In the CDataThrd unit (see Listing One,
beginning on page 16), the Create constructor suspends the
thrdData thread so we can create a listening socket for the
incoming data stream. To do this, we perform these steps:
1) Call WSASocket to create the socket that uses TCP.
2) Populate the DataAddr data structure, including the

assignment of the local port.
3) Call bind to associate the listening socket with the local

address.

Then we call the thread’s Resume method, which activates
Execute to call GetFile. Using the listen API, GetFile “listens”
for an incoming connection on the local port. When a con-
nection arrives, we call another WinSock 2 API, and choose
to “accept” the connection. Inside the repeat loop, we call
WSAReceive to read the data stream, and Write (a method of
FileStream, derived from the TFileStream class) to store the
data. The reading and storing of the data stream continue
until the data streaming ends.

When the data stream ends, the thrdData thread calls the
event procedure, OnDataThrdDone, to terminate itself. To re-
enable the thread-safe Get File! button, the event procedure
calls EnableBtn via Synchronize. The thrdMsg thread also ter-
minates. Note that I’ve hard wired the C drive in the previous
code, which you will need to adjust for your machine.

This completes the client application; now we’ll take a brief
look at the server, SFTPServer.

SFTPServer
Much of what we have said about SFTPClient applies to
SFTPServer, with a few exceptions that I will describe. I
mentioned that the server would compare the tokens received
from the client with its database. For brevity (instead of
using a database), SFTPServer compares the tokens extracted
from the client’s request with those we entered in the Edit
controls. Figure 4 shows these controls in the front end.

Like SFTPClient, we click the Load button to load
WinSock 2. Then, we click the Start button to create the
message thread that will handle any messages from the
client. However, unlike SFTPClient, the server’s thrdMsg
exists for the lifetime of the application.

thrdMsg’s constructor sets up a listening socket by calling
the WSASocket and bind APIs. SFTPServer uses the same
mechanisms, as demonstrated in SFTPClient to create the
network event objects, and to monitor and intercept net-
work events.
15 July 1998 Delphi Informant
When SFTPServer receives a message on UDP port 2589, it
generates an FD_READ event that invokes the ParsedOK
function to decipher the message. If the message is deci-
phered correctly (i.e. all the tokens match what we entered
in the Edit controls), then SFTPServer calls SendMsg to send
the “OK” message back to the client. SFTPServer creates the
thrdData thread to handle the transfer of data to the client.

The thrdData.Create constructor creates a new socket to
send a file over TCP and initializes some variables before
calling Resume. In the Execute procedure, SendFile sends the
file. SendFile calls the WSAConnect API to connect with
SFTPClient on the designated TCP port. Upon connection,
SFTPServer uses FileStream.Read (FileStream is derived from
TFileStream) to read the data from a file, and WSASend to
send a stream of bytes. These actions take place in a repeat
loop. After sending the file, Execute calls Terminate to kill
the data thread. Figure 5 shows the dialog box after
SFTPServer transfers a file.

Using the Example SFTPClient and SFTPServer Applications
There are two zip files in this month’s archives,
SFTPCLIENT.ZIP and SFTPSERVER.ZIP, for the client
and server applications, respectively. Install the client on one
machine and the server on another on your LAN or some-
where on the Internet. Make sure you have WINSOCK2.PAS
(included in SFTPCLIENT.ZIP) in the path; I suggest you
put the unit in the Delphi \Lib directory.

For the client and server, change the hard-wired drive
mapping (in the GetFile method in the CDataThrd and

On the ’Net
SDataThrd units) to suit your system, and compile the
SFTPClient and SFTPServer projects. Start up
SFTPClient first, and enter the user name and password.
If, on startup, the call to gethostname fails, enter any
machine name in the edMachineName control. Armed
with the details, start up SFTPServer and enter the details
of SFTPClient, such as user name, password, and
machine name on which SFTPClient resides. Then load
WinSock 2 in both applications. If an application fails to
load, perhaps it’s because WinSock 2 isn’t on your
Windows 95 system (Windows NT 4.0 has WinSock 2
already installed). To get instructions on where to down-
load the WinSock 2 SDK, aim your browser at
http://www.sockets.com/winsock2.htm.

Looking Ahead
We have achieved the following:

Using some of WinSock 2-specific APIs to implement a
uni-directional file transfer
Using these APIs with multi-threading
Designing and using our own protocol
Using UDP and TCP in the same application

In the next article, we’ll examine the exciting world of multi-
cast (“push technology”) and how to create simple multicast
server and client applications. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\JUL\DI9807JP.

John Penman is the owner of Craiglockhart Software, which specializes in provid-
ing Internet and intranet software solutions. John can be reached on the Internet
at jcp@craiglockhart.com.
Begin Listing One — SFTP Client Data Thread Unit
unit CDataThrd;

interface

uses
Classes, Windows, Winsock2;

type
TDataThrd = class(TThread)
protected

sktListenData,

sktData: TSocket;

DataAddr: TSockAddrIn;

Msg, NewFileName: string;
procedure Execute; override;
procedure OnDataThrdDone(Sender: TObject);

procedure GetFile;
16 July 1998 Delphi Informant
procedure Update;

public
constructor Create(PortNo: Integer; FileName: string);

end;

var
thrdData: TDataThrd;

implementation

uses
Dialogs, Main, CMsgThrd, SysUtils;

{ TDataThrd }

constructor TDataThrd.Create(PortNo: Integer;

FileName: string);
var

Res: Integer;

begin
// Create thread in suspended state, so we can set

// important variables.

inherited create(True);

FreeOnTerminate := True;

OnTerminate := OnDataThrdDone;

sktListenData := WSASocket(AF_INET,SOCK_STREAM,

IPPROTO_TCP, nil, 0, 0);
if sktListenData = INVALID_SOCKET then begin

Msg := Concat(

'Failed to create listening socket! Error ',

IntToStr(WSAGetLastError));

Synchronize(Update);

State := stError;

Exit;

end;

with DataAddr do begin
sin_port := htons(PortNo);

sin_family := AF_INET;

sin_addr.s_addr := INADDR_ANY;

end;

Res := bind(sktListenData, DataAddr, SizeOf(DataAddr));

if Res = SOCKET_ERROR then begin
Msg := Concat('Failed to create listening socket! ',

IntToStr(WSAGetLastError));

Synchronize(Update);

State := stError;

closesocket(sktListenData);

Exit;

end;

NewFileName := FileName;

// Start the data thread.

Resume;

end;

// Execute the data transfer in the background.

procedure TDataThrd.Execute;

begin
GetFile;

end;

// Retrieve the file.

procedure TDataThrd.GetFile;

var
Buffers: array[0..MAXGETHOSTSTRUCT-1] of Char;

Done: Boolean;

Data: PWSABUF;

Flags, NoBytesRecv, Res, Size: Integer;

http://www.sockets.com/winsock2.htm

On the ’Net
FileStream: TFileStream;

begin
Res := listen(sktListenData,1);

if Res = SOCKET_ERROR then begin
Msg := Concat('Call to listen failed. Error ',

IntToStr(WSAGetLastError));

Synchronize(Update);

closesocket(sktListenData);

State := stError;

Exit;

end;

Size := SizeOf(DataAddr);

sktData := WSASocket(AF_INET,SOCK_STREAM, IPPROTO_TCP,

nil, 0, 0);
sktData := accept(sktListenData, DataAddr, Size);

if sktData = INVALID_SOCKET then begin
Msg := Concat('Call to accept failed. Error ',

IntToStr(WSAGetLastError));

Synchronize(Update);

State := stError;

closesocket(sktListenData);

closesocket(sktData);

Exit;

end;

closesocket(sktListenData);

// Set the Data buffer and FileStream to avoid warning

// messages from the compiler.

Data := nil;
FileStream := nil;
try

Data := AllocMem(SizeOf(Buffers));

Data.buf := Buffers;

Data.len := SizeOf(Buffers);

Flags := 0;

// Create a new file for writing.

try
FileStream := TFileStream.Create('C:\' + NewFileName,

fmOpenWrite);

Done := False;

repeat
Res := WSARecv(sktData, Data, 1, @NoBytesRecv,

@Flags, nil, nil);
if Res = SOCKET_ERROR then begin

FileStream.Free;

Msg := Concat('Call to WSARecv failed. Error ',

IntToStr(WSAGetLastError));

Synchronize(Update);

State := stError;

closesocket(sktData);

Exit;

end;

if NoBytesRecv = 0 then
Done := True

else
FileStream.Write(Data.Buf^, NoBytesRecv);

until Done;

closesocket(sktData);

Msg := Concat('Finished downloading ',

NewFileName,' .');

Synchronize(Update);

finally
FileStream.Free;

end;
finally

FreeMem(Data, SizeOf(Buffers)-1);
17 July 1998 Delphi Informant
end;
end;

procedure TDataThrd.Update;

begin
frmMain.memStatusMsg.Lines.Add(Msg);

end;

procedure TDataThrd.OnDataThrdDone(Sender: TObject);

begin
Terminate;

Msg := 'Finished!';

Synchronize(Update);

frmMain.bbtnGetFile.Enabled := True;

end;

end.

End Listing One

18 July 1998 Delphi Informant

Sound+Vision
Delphi / Palettes

By Ray Lischner

Palettes Made Plain
Demystifying Microsoft Windows Palettes
P alettes are one of the least understood aspects of Windows graphics
programming. In some ways, Delphi’s ease-of-use contributes to this

problem; it usually manages all palette issues automatically. Sometimes,
however, you need more control over your application’s palette. Therefore,
whether you write components, games, or client/server applications, you
should understand how palettes work in Windows and in Delphi.
Introducing Palettes
A palette, in programming terms, is a small
array of colors, similar to a painter’s palette.
The painter has a vast number of colors at
their disposal, but working with all those col-
ors is unwieldy. Instead, a painter selects a
few colors to work with, and puts only those
colors on the palette. A computer graphics
palette is similar. When using a palette, your
program must display only colors selected
from the palette — and no others.

Memory considerations. The most common
use for palettes is to save memory. For exam-
ple, a 1024x1024-pixel bitmap with 24 bits
of color information per pixel takes up 3MB
of memory. A palette can reduce that by two-
thirds, to 1MB. The way a palette works is to
keep a table of 256 colors, and each pixel in
the bitmap refers to one of the palette entries.
Each palette entry has a full 24 bits of color
information — 8 bits each for the colors red,
green, and blue. Because the bitmap contains
only palette indices, it’s smaller than the
bitmap that contains full color information.
An index into a 256-color palette takes up 8
bits instead of 24, making the bitmap one-
third the size of the original bitmap.
The drawback to using a palette is that you
have a limited number of colors from which
to choose. In the previous example, the
bitmap contains over a million pixels, and
each pixel might have a different color.
When using the palette, though, the bitmap
is limited to 256 colors. The saving grace is
that the human eye cannot distinguish a mil-
lion colors, so you don’t need the full color
information for every pixel. On the other
hand, the eye can identify more than 256
colors, so using a palette slightly compromis-
es image quality in exchange for a smaller
bitmap size.

Microsoft defines several different bitmap
formats that Windows supports. A bitmap
might have a palette with only 16 colors (4
bits per pixel) or 256 colors (8 bits per pixel).
If you don’t mind the extra size, you can also
create bitmap files that store full color infor-
mation for each pixel.

Video adapters. Windows also uses a palette
for certain video adapters. Just as you might
want to save disk space in a bitmap file, sav-
ing video memory is also important. Video
RAM costs more than normal system RAM,

Sound+Vision
so anything to reduce the amount of RAM your video card
needs can help reduce its cost. Thus, many video adapters use
palettes.

For example, suppose your video card has 1MB RAM. At
640x480 pixels, it can store 24 bits of color information per
pixel. But that’s not many pixels on the screen. Run Delphi,
open the Object Inspector, a form, and the source window,
and try to make all these windows visible at the same time.
The screen is too small for that much information. I like to
use 1024x768 pixels, which gives me more screen real estate,
but only 8 bits per pixel. You can’t fit any reasonable color in
only 8 bits, so the video adapter uses a 256-entry color
palette. In the palette, the video card typically uses 18 bits per
pixel (6 bits each for red, green, and blue), but there’s no rea-
son why your card couldn’t use more or fewer bits in the
palette. The important thing is that each pixel you see doesn’t
have a real color stored in the video RAM, just an index into
the video card’s palette. The palette stores the real color infor-
mation. For this reason, a palette is also known as a color
lookup table.

Windows manages the video card’s palette, so the more com-
mon term for the display palette is the system palette. The sys-
tem palette stores all the colors that you see on your monitor.
If you could change an entry in the system palette, every pixel
that displays that entry’s index would immediately change
color, but Windows protects the system palette against inad-
vertent changes. Sudden changes to the system palette can be
distracting and annoying. With the proper setup, however,
you can make abrupt changes to the system palette. If you do
it carefully, you can achieve some interesting effects, as you
will learn later in this article.

Video drivers. Because everything that Delphi displays must
go through your video adapter, you must be sure you’re using
the most up-to-date video drivers for your video card. The
most common source of problems when using palettes is not
your program, but the video drivers. If you notice any strange
video behavior, the first thing you should check is the version
and date of your video drivers. Get the most recent drivers
from the vendor, and try your program again.

Palettes and Microsoft Windows
Now that you know the basics of color palettes, the next
step is to learn how Windows deals with palettes. The first
lesson is that Windows uses a palette only for video cards
that display 256 colors (8 bits per pixel). Plain VGA dis-
plays a fixed set of 16 colors, and you cannot change those
colors, so Windows doesn’t need or use a palette. With
more than 8 bits per pixel, Windows stores the full color
information for each pixel, whether it’s 15 bits, 16 bits, or
24 bits per pixel.

Windows lets your application use palettes even if the video
card does not. This makes your programming job easier. The
same code works with any video card, whether or not it uses a
system palette. There are times, though, when you need to
know whether the system uses a real palette. To do that, check
19 July 1998 Delphi Informant
the video adapter’s RasterCaps capability by calling the
Windows API function GetDeviceCaps and testing for the
Rc_Palette capability, as shown here:

if (GetDeviceCaps(Canvas.Handle, RasterCaps) and
Rc_Palette) <> 0 then

UsesPalette := True;

Notice that the first argument to GetDeviceCaps is the han-
dle of a canvas. The canvas should be a form or other con-
trol’s canvas, not a bitmap’s canvas. You might call
GetDeviceCaps in the form’s OnCreate handler, for example.
Even if the video card doesn’t use a palette, your program
might need to work with bitmap palettes, so don’t put
away this article yet.

Sharing the palette. If your video card uses a system
palette, you know it can display, at most, 256 colors at one
time. Windows reserves 20 of those colors for its own use.
The remaining 236 colors are shared by every application.
If one program uses all 236 colors, the other programs are
left out in the cold. To ensure that every program gets a fair
shot at displaying its own colors, Windows has a set order
in which applications contend for the system palette.

Windows always starts with the foreground application.
This program gets to fill the system palette with as many
colors as it wants. Then, Windows asks every other applica-
tion to fill the rest of the system palette, going backward in
z-order. When an application tries to fill the system palette
with its colors, it’s known as realizing a palette. If an appli-
cation has multiple windows open, Windows starts with the
active window, then goes to the window behind that, and
so on, going backward through all the application’s win-
dows. Then it proceeds to the next application.

When an application realizes its palette, it only gets to set
colors to palette slots that haven’t been filled. If this isn’t
possible, Windows maps the requested palette entry to the
closest matching color. Eventually, every application gets to
realize its palette, but the last application gets the last pick
of the system palette entries. If a foreground application
grabbed most of the palette entries, background applica-
tions might not look right. Windows does its best to match
requested colors with colors already in the palette, but its
success depends entirely on the colors used by the fore-
ground application.

Figure 1 illustrates how palette realization and color
matching works. The first application gets to fill the first
few slots of the system palette (after the standard Windows
colors) with its choice of colors. When the next application
realizes its palette, Windows matches its request to colors
already in the palette, and creates new palette entries for
unmatched colors. The last application matches what col-
ors it can, and creates as many new entries as it can, but
the system palette fills before Windows can realize the last
few colors. In this case, Windows does its best to match
the colors against similar colors that are already in the sys-
tem palette.

Sound+Vision
The reserved 20 colors guarantees that the basic colors
(black, red, cyan, yellow, white, etc.) are always available.
Even if another program is displaying 236 finely graded
shades of puce, your application in the background will be
Figure 1: Mapping palettes to the system palette.

Figure 2: The 20 standard Windows colors.

20 July 1998 Delphi Informant
able to display the basic Windows colors correctly. Thus, you
should always try to stick with these basic colors. Figure 2
shows the standard colors, including literals for the color
names that Delphi defines.

When you switch applications, Windows starts with a fresh
system palette and gives the new foreground application a
chance to realize its palette. This can change all the colors
displayed, which might cause an annoying flicker. This hap-
pens most often when the previous or new foreground appli-
cation uses most or all of the system palette. You can do your
part to avoid this flicker by using as little of the system
palette as your application allows.

One way you can minimize the number of colors your appli-
cation needs is to test how many distinct colors the video
card can display. Most 256-color video adapters use a color
resolution of 18 bits per pixel, or 6 bits each for red, green,
and blue. For example, this means the video card can display
at most 64 (or 26) distinct shades of gray. To make a complete
gradation of all possible shades of gray, you need to take up
only 64 entries in the system palette, not all 236. To test the
color resolution, ask for the ColorRes capability from
GetDeviceCaps.

Palette Handles
To use a palette in Windows, you must create the palette;
Windows then gives you a handle for the palette. To create a
palette, start with a logical palette, which is the array of colors
that make up the palette. You need to allocate a TLogPalette
record dynamically because of the unusual way this type is
defined. It uses an old C hacker’s trick, namely, an array of one
element. You can allocate a larger array using GetMem, but the
record definition prevents you from using range checking.
After you set up the logical palette, call the Windows API
function CreatePalette, which returns a palette handle.

The listing in Figure 3 shows an example of creating a logical
palette that displays 64 distinct shades of gray. It then creates
a palette handle from the logical palette. Once you’ve created
the palette handle, you can free the logical palette. Keep the
palette handle until you’re done using it, then use the form’s
OnDestroy handler to destroy the palette handle by calling
DeleteObject.

You can also set a flag for each palette entry to do special
things with the palette. One useful option is Pc_Explicit,
which lets you get the actual color that the Windows sys-
tem palette stores. You can use this information to display
the system palette, which is a helpful debugging tool. When
you’re writing a program that sets its own palette, you can
examine the system palette to learn whether your applica-
tion is setting up the palette correctly. The PalView project
that accompanies this article demonstrates how to view the
system palette (see end of article for download details).

You don’t have to call CreatePalette to get a palette handle. When
Delphi loads a bitmap that contains a palette, it automatically
creates a palette handle for the bitmap. You can refer to the

procedure TForm1.FormCreate(Sender: TObject);

var
LogPal: PLogPalette;

Gray: Byte;

I: Integer;

BitsPerPixel: Integer;

begin
// Determine the number of bits per pixel.
if (GetDeviceCaps(Canvas.Handle, RasterCaps) and

Rc_Palette) <> 0 then
BitsPerPixel := GetDeviceCaps(Canvas.Handle, ColorRes)

else
BitsPerPixel := GetDeviceCaps(Canvas.Handle,Planes) *

GetDeviceCaps(Canvas.Handle,BitsPixel);

// Divide by 3 to get the number of distinct shades of
// each color element: red, green, blue. Then determine
// the number of colors.
NumShades := 1 shl (BitsPerPixel div 3);

// Allocate the logical palette. The LogPal record
// already has room for one color, so add enough memory
// for the remaining colors.
GetMem(LogPal, SizeOf(LogPal) + (NumShades-1) *

SizeOf(TPaletteEntry));

try
LogPal.palVersion := $300; // Required by Windows.
LogPal.palNumEntries := NumShades;

for I := 0 to Pred(NumShades) do begin
// Use a linear gray scale for simplicity. In a real
// graphics program, you should use a more
// sophisticated gray scale because the human eye
// does not respond linearly.
Gray := I * 255 div NumShades;

{$R- turn off because TLogPalette is defined poorly.}
LogPal.palPalEntry[I].peRed := Gray;

LogPal.palPalEntry[I].peGreen := Gray;

LogPal.palPalEntry[I].peBlue := Gray;

LogPal.palPalEntry[I].peFlags := 0;

{$R+}
end;
Palette := CreatePalette(LogPal^);

if Palette = 0 then
RaiseLastWin32Error;

finally
FreeMem(LogPal);

end;
end;

Figure 3: Creating a palette with 64 shades of gray.

Sound+Vision

procedure TForm1.FormPaint(Sender: TObject);

var
I: Integer;

Rect: TRect;

Top: Integer;

OldPal: HPalette;

begin
// Tell Windows which palette to use when drawing
// the rectangles.
OldPal := SelectPalette(Canvas.Handle,GetPalette,False);

try
// Fill a rectangle for each horizontal stripe. The
// horizontal limits are fixed, and update the top and
// bottom in the loop.
Rect.Left := 0;

Rect.Right := ClientWidth;

// To avoid gaps in coverage, increment Top as
// the top of the next stripe.
Top := 0;

for I := 1 to NumShades do begin
Canvas.Brush.Color := PaletteIndex(I - 1);

Rect.Top := Top;

// The next top is the current bottom.
Top := I * ClientHeight div NumShades;

Rect.Bottom := Top;

Canvas.FillRect(Rect);

end;
finally

// Always restore the old palette.
SelectPalette(Canvas.Handle, OldPal, True);

end;
end;

Figure 4: Painting with the gray-shade palette.
TBitmap.Palette property to get the bitmap’s palette handle.
When using a bitmap’s palette, remember that the bitmap and
its palette are intimately related. If you use the bitmap with a
different palette, Windows will not display the bitmap correctly.
A common mistake in Delphi programs is to copy a bitmap,
using, say, TCanvas.CopyBitmap, when the source and destina-
tion canvases use different palettes. Unless you know that they
use the same palette, you should call StretchDIBits instead.

Working with bitmap palettes is easier if you understand
the difference between a device-dependent bitmap (DDB)
and a device-independent bitmap (DIB). Delphi 1 and 2
always use DDBs, but Delphi 3 will use a DIB if possible.
The details of working with DDBs and DIBs, however, is
beyond the scope of this article.

Delphi and Palettes
Once you have a palette handle, then what? Delphi can use
the palette handle and automatically realize that palette for
21 July 1998 Delphi Informant
you. When your application becomes active, Windows asks it
to realize its palette. When another application becomes
active, Windows tells your application that it’s no longer
active, and it can realize its palette as a background applica-
tion. Delphi handles these details for you. All you need to do
is override your form’s GetPalette method to return a palette
handle. By default, this function returns zero, which means
your form doesn’t have a palette.

The listing in Figure 4 shows an example of a form that
displays a color gradient as its background. Notice how it
calls PaletteIndex to ensure the colors it paints are in the
palette. You have four ways to specify a color in Delphi.
The first way is to use one of Delphi’s special color names,
such as clRed, clWhite, or a system color name, such as
clWindowText. Another is to use an explicit red, green, and
blue combination, by calling the RGB function. If you
want to make sure you use a color from your palette, call
PaletteRgb with the same arguments. If you know which
palette entry you want, you can use PaletteIndex.

If you are writing a new control, you can override the
GetPalette method for the control. However, if a form has
more than one control that defines its own palette, you will
have problems, because each control is trying to realize its
palette as the main window’s palette. As a component writer,
you never know what other controls might be on the form.
Thus, you should do your best not to use the system palette.
If you must, try to use as few colors as possible. Otherwise,
you might be in a situation where another control gets all of

Sound+Vision
its colors in the system palette, but your control gets no
palette entries. When that happens, your control will use its
own palette indices, but those indices will refer to colors
from the other control’s palette. The results are uglier than
you can imagine.

If you decide that your component or form must use its own
palette, say, for a color gradient, you can create the palette and
return the handle from GetPalette, but you need to take one
more step when painting your control. Although Delphi auto-
matically arranges for Windows to use your palette, you still
procedure TGradient.Paint;

var
I: Integer;

X, Y: Integer; // Current position on canvas.
Rect: TRect; // Rectangle for filling 1 band in gradient.
OldPal: HPalette; // Old palette.
Red, Green, Blue: Byte;

begin
Rect := ClientRect;

Y := 0;

X := 0;

OldPal := SelectPalette(Canvas.Handle,GetPalette,False);

try
for I := 0 to NumColors-1 do begin

{$R-}
with LogPalette.palPalEntry[I] do

Canvas.Brush.Color :=

PaletteRgb(peRed, peGreen, peBlue);

{$R+}
if Orientation = goVertical then begin

Rect.Top := Y;

Y := MulDiv(ClientHeight, I + 1, NumColors);

Rect.Bottom := Y;

end
else begin

Rect.Left := X;

X := MulDiv(ClientWidth, I + 1, NumColors);

Rect.Right := X;

end;
Canvas.FillRect(Rect);

end;
finally

SelectPalette(Canvas.Handle, OldPal, False);

end;
end;

Figure 5: A gradient control’s Paint method.

Figure 6: Using the gradient control.

22 July 1998 Delphi Informant
need to select the palette before using it. In your control’s Paint
method, or form’s OnPaint handler, call the Windows API func-
tion SelectPalette. You must pass a canvas handle as the first argu-
ment. A canvas has exactly one palette, from which it draws its
colors. When you select your palette, the canvas deselects the
previous palette. You must restore the old palette before your
Paint method returns. Use a try..finally block to guarantee the
palette is properly restored. The listing in Figure 5 shows a sim-
ple gradient component’s Paint method, illustrating this use of
SelectPalette. Figure 6 depicts a form using the gradient control.

Palette Tricks
There’s one case where it makes sense for a control to seize at
least part of the palette. Earlier in this article, I wrote that a
palette can help you achieve interesting effects. The most com-
mon palette trick is to animate the palette. In palette anima-
tion, you deliberately change colors in the system palette to
change the colors on the display without repainting the form or
control. Palette animation requires some extra work, though.

To start with, you must inform Windows of your inten-
tions. When you create the palette, you must reserve the
palette entries that you will animate. Windows will pre-
vent other applications from using those palette entries,
even if they have the same colors. This prevents your
application’s tricks from interfering with the colors in
other applications. To reserve a palette entry, set peFlags to
Pc_Reserved when creating the logical palette.
// Shift the colors to animate the palette. Just rotate all
// the colors in the palette by one step.
procedure TMovingGradient.ShiftColors;

var
Tmp: TPaletteEntry;

I: Integer;

begin
Assert(LogPalette <> nil);

{$R-}
Tmp := LogPalette.palPalEntry[0];

for I := 0 to LogPalette.palNumEntries-2 do
LogPalette.palPalEntry[I] :=

LogPalette.palPalEntry[I+1];

LogPalette.palPalEntry[LogPalette.palNumEntries-1]:=Tmp;

{$R+}
end;

// Animate the control by shifting the colors and then
// telling Windows to use the new colors.
procedure TMovingGradient.Animate(Sender: TObject);

var
OldPal: HPalette;

begin
GetPalette; // Make sure the palette has been created.
ShiftColors;

OldPal := SelectPalette(Canvas.Handle, Palette, False);

try
AnimatePalette(Palette, 0, LogPalette.palNumEntries,

@LogPalette.palPalEntry[0]);

finally
SelectPalette(Canvas.Handle, OldPal, False);

end;
end;

Figure 7: A sliding gradient effect using palette animation.

Figure 8: An illustration of the sliding gradient effect.

Sound+Vision
The AnimatePalette API function changes colors in the
reserved entries of the system palette. The listing in Figure 7
shows how you can use this trick to make a sliding gradient
effect. Figure 8 shows what it looks like at run time.

Most of the palette functions work the same on systems
with palettes as on systems without palettes. Windows and
Delphi hide the differences from you, except with
AnimatePalette. You can call AnimatePalette on any system,
but if the computer isn’t running in 256-color mode,
Windows will not have a system palette.

Conclusion
Delphi simplifies the use of palettes, but you may still need to
understand how to use them correctly. Bitmaps use palettes to
save disk space, and video adapters use palettes to save video
memory. Delphi manages the Windows system palette, which
Windows uses if the video card displays only 256 colors. You can
use palettes in a custom control or in an application. You can
even play tricks with palettes, such as using palette animation.

Delphi takes care of most of the burden of using palettes.
Your component or application just needs to override the
GetPalette method to return a palette handle. You can get a
palette handle by creating a logical palette with CreatePalette,
or you can return the palette handle of a bitmap by using
the TBitmap.Palette property.

When using palettes, you must realize that the palette entries
are a scarce resource, and every application competes for those
precious few colors. Windows reserves 20 colors for its own
use, leaving 236 palette entries to be shared among all applica-
tions. If your application needs only 20 extra slots, make sure
you use only 20 — don’t gobble up all 236. Windows does its
best to meet the conflicting demands of every application, but
when a new application comes forward, it gets priority in the
system palette, possibly causing other applications to lose their
old palette entries. This causes a distinct flicker as Windows
repaints every application with its new colors. You can mini-
mize this distraction by using standard colors whenever possi-
ble, and keeping your application’s or component’s palette
demands to a minimum. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\JUL\DI9807RL.
23 July 1998 Delphi Informant
Ray Lischner is the author of Secrets of Delphi 2 [Waite Group Press, 1996]
and Hidden Paths of Delphi 3 [Informant Press, 1997]. He teaches computer
science at Oregon State University and provides consulting and training in
Delphi, Java, and Smalltalk. Catch his presentation at the 9th Annual Borland
Conference, and learn how easy it is to customize Delphi’s IDE. You can con-
tact Ray at delphi@tempest-sw.com.

COM Callbacks
Part II: Connectable Objects

Distributed Delphi
Delphi 3 / COM / Connectable Objects

By Binh Ly

IConnectionPoi

function Enu

out enum:

function Fin

const iid:

end;

IConnectionPoi

function Get

function Get

out cpc: I

function Adv

function Una

function Enu

out enum:

end;

Figure 1: The I
interfaces.

24 July 1998 Delphi Informant
Understanding Connectable Objects, also known as connection points, is
really not that difficult. What makes it sound complex is the introduction of

several technical terms, such as sinks, sources, incoming interfaces, outgoing
interfaces, etc. The purpose of this article (the second of a two-part series) is to
familiarize you with these terms, and provide an implementation of the connec-
tion points methodology using the Chat application from last month’s article as
an example.
The basic idea behind connection points is
for client objects to be able to easily com-
municate with server objects, and vice
versa, using a standard protocol. The pro-
tocol works this way: A client object asks a
server object if it knows anything about a
particular callback interface; the server
object can then either say it does or it
doesn’t. If the server object says it does,
the client can then say “Here’s my call-
back interface. Sign me up and let’s start
talking to each other.” From that point, the
ntContainer = interface
mConnectionPoints(

IEnumConnectionPoints): HResult;

dConnectionPoint(

 TIID; out cp: IConnectionPoint): HResult;

nt = interface
ConnectionInterface(out iid: TIID): HResult;

ConnectionPointContainer(

ConnectionPointContainer): HResult;

ise(const unkSink: IUnknown;

out dwCookie: Longint): HResult;

dvise(dwCookie: Longint): HResult;

mConnections(

IEnumConnections): HResult;

ConnectionPointContainer and IConnectionPoint
client and the server can start calling each
other’s methods.

What’s nice about this idea is that it’s
extremely flexible. The client doesn’t need
to know any specifics about a particular
server object being able to support a partic-
ular callback interface. The client would
simply ask any imaginable server object if
it supports an interface that the client can
implement, and, if the server object says
yes, the client can say “Hey! lets make a
deal.” Otherwise, the client can say “No
deal!” and move on to asking another
server object.

In COM parlance, the callback interface
(from the server’s point of view) is called an
outgoing interface because it’s an interface
that is implemented in the client to be used
by the server, as opposed to an incoming
interface, which is implemented in the server
to be used by the client. A server object that
supports at least one outgoing interface is
called a Connectable Object. For the client to
connect a callback interface to a Connectable
Object, the Connectable Object must imple-
ment a connection point for that specific
interface. It is not uncommon for a server

Distributed Delphi

procedure TChatChannel.Initialize;

begin
inherited;
FChatUsers := TConnectionPoints.Create(Self);

FChatEventSinks := FChatUsers.CreateConnectionPoint(

IChatEvent, ckMulti, nil);
end;

Figure 2: Initialization for ChatChannel’s connection points.
object to support more than one outgoing interface; thus,
it may need to implement several connection points for
various clients.

In this connection points model, the Connectable Object is
often called a source, and the client object that implements
the callback interface is called a sink.

Connection Points Objects and Interfaces
COM objects implement connection points by using the
IConnectionPointContainer and IConnectionPoint interfaces
(see Figure 1). A client object that wishes to connect to a
server object first queries the server object for an
IConnectionPointContainer interface.

If the server passes back a valid IConnectionPointContainer,
the client then calls the FindConnectionPoint method pass-
ing into the iid parameter the interface ID (IID) of the
outgoing interface that it implements. If the server supports
that interface, it passes back an IConnectionPoint pointer in
the cp parameter, which serves as the connection point for
the client to use.

At this point, the client has established that the server can
support its sink interface. The only remaining thing to do is
to pass a pointer to that interface to the server. Using the cp
parameter, the client now calls IConnectionPoint.Advise,
passing into unkSink a pointer to its sink interface’s
IUnknown. Advise’s dwCookie parameter is passed back from
the server to the client, which serves as a unique ID that the
client needs when it later disconnects from the connection
point. IConnectionPoint’s UnAdvise method allows the client
to disconnect its sink interface as a means to terminate its
connection from the server. UnAdvise takes into the
dwCookie parameter the unique ID the client got earlier by
calling Advise.

Essentially, a connection point container
(IConnectionPointContainer) is just a list of all connection
points that a server object supports. This means that a
server object can support a virtually unlimited number of
outgoing interfaces, each defined by a specific connection
point. A connection point is also capable of supporting an
unlimited number of clients. As long as the server can pass
back a unique value into the dwCookie parameter of
IConnectionPoint.Advise, any number of clients can con-
nect to a single connection point, where each of them is
uniquely identifiable using the dwCookie value.

We won’t go further into the details of the rest of the meth-
ods in the connection points interfaces because they’re not
very important for our purposes. You can always look them
up on MSDN online at http://www.microsoft.com/msdn/.

You’re probably thinking that implementing all these connec-
tion points interfaces will take more work than the hand-coded
callback interface manager we studied last month. Well, you
may be surprised to know that Delphi already provides the basic
connection points implementations in its TConnectionPoints and
25 July 1998 Delphi Informant
TConnectionPoint classes, which are in the Axctrls unit
(TConnectionPoints implements IConnectionPointContainer and
TConnectionPoint implements IConnectionPoint). With the help
of these classes, we’re now ready to implement our Chat applica-
tion using the connection points methodology.

Implementing the Server
For our chat server, we’ll need to implement a connection point
for the IChatEvent sink interface, and a connection point con-
tainer that contains this single IChatEvent connection point.
Because ChatChannel is the Connectable Object in our server,
we’ll implement the connection points objects in TChatChannel.

Figure 2 shows the initialization code for ChatChannel ’s con-
nection points. FChatUsers is of type TConnectionPoints, and
is the object that implements IConnectionPointContainer.
After creating FChatUsers, we create the object that imple-
ments the IChatEvent connection point. This is accomplished
by using the TConnectionPoints.CreateConnectionPoint
method. CreateConnectionPoint accepts three parameters:
1) The interface ID of the sink interface that this connection

point supports;
2) This connection point’s “kind” (ckMulti if it supports

multiple clients, or ckSingle if it supports one client); and
3) An event handler, OnConnect:TConnectEvent, that gets

triggered every time a client connects to, or disconnects
from, this connection point, i.e. when the client calls
IConnectionPoint.Advise or IConnectionPoint.UnAdvise,
respectively. In our case, we pass nil as the argument
because we don’t need to do anything special as clients
connect or disconnect from ChatChannel.

The next step is to implement ChatChannel ’s BroadcastMessage
method. If you recall, BroadcastMessage is used by ChatChannel
to broadcast an incoming chat message to all IChatEvent clients
that are connected to the channel. We previously implemented
this by simply cycling through our TChatUsers class’ items and
calling each client’s IChatEvent.GotMessage method manually.
This time, we’ll do it using TConnectionPoint.

Figure 3 shows our new BroadcastMessage implementation.
Although it looks complex at first, it really is just an imple-
mentation of a simple concept. COM’s way of traversing the
sink clients of a connection point is through the use of an
enumerator. Enumerators are common in COM; this is a
good introduction if you haven’t seen one before. Basically, an
enumerator provides a fairly standard way of accessing collec-
tion object items by providing the user with an interface
where the user can simply say:

Reset — move to first item in the collection,

http://www.microsoft.com/msdn/

Distributed Delphi
Next — move to next item in the collection, or
Skip — move to next item skipping a specified number
of items.

The idea is that the user can traverse the entire collection
using a call to Reset followed by repetitive calls to Next
until it fails, in which case there are no more available
items in the collection.

IEnumConnections is a COM enumerator designed specifically to
iterate a connection point’s sink interface items. We first get an
IEnumConnections pointer from a connection point using the
IConnectionPoint.EnumConnections method. EnumConnections
uses its single parameter, Enum, to return the IEnumConnections
enumerator. We then use Enum’s Next method to iterate all sink
interface items using a while loop. Next accepts three parameters:
1) The count of the next consecutive connection point items

to retrieve.
2) An array of Delphi’s TConnectData structure (the length
26 July 1998 Delphi Informant

procedure TChatChannel.BroadcastMessage(

const UserName, Message: WideString);

var
Enum: IEnumConnections;

ConnectData: TConnectData;

Fetched: Longint;

begin
OleCheck((FChatEventSinks as IConnectionPoint).

EnumConnections(Enum));

while Enum.Next(1, ConnectData, @Fetched) = S_OK do begin
(ConnectData.pUnk as IChatEvent).GotMessage(

UserName, Message);

ConnectData.pUnk := nil;
end;

end;

Figure 3: The ChatChannel object’s BroadcastMessage procedure.

IEnumConnections = interface
function Next(celt: Longint; out elt;

pceltFetched: PLongint): HResult;

function Skip(celt: Longint): HResult;

function Reset: HResult;

function Clone(out enum: IEnumConnections): HResult;

end;

TConnectData = record
pUnk: IUnknown;

dwCookie: Longint;

end;

Figure 4: The IEnumConnections interface and TConnectData
structure.

function TChatChannel.ObjQueryInterface(const IID: TGUID;

out Obj): Integer;

begin
Result := inherited ObjQueryInterface(IID, Obj);

if not Succeeded(Result) then
if FChatUsers.GetInterface(IID, Obj) then

Result := S_OK;

end;

Figure 5: Delegating IConnectionPointContainer for
TChatChannel.
of this array must be pre-allocated by the caller, and must
have at least enough space specified in the previous para-
meter. If the previous parameter is 1, this parameter can
just be a single record of the TConnectData structure).

3) A pointer to a Longint variable containing the number of
items successfully retrieved as a result of the Next call.

Taking a close look at TConnectData, you’ll note it’s very sim-
ilar to our TChatUser class, which contains the sink interface
and its corresponding unique ID. Calling Next fills this
TConnectData structure with the proper information from
each client item in the connection point. Because a connec-
tion point stores the sink interface’s IUnknown, we have to
cast it back (ConnectData.pUnk as IChatEvent) before we can
call the GotMessage method. Note that we test the return
value of Next against S_OK so we can determine if we’ve
exhausted all the items in the connection point. After the last
item, calling Next will return an HResult error code rather
than S_OK (see Figure 4).

One last thing: We have to somehow make the client think that
ChatChannel actually implements IConnectionPointContainer
because, after all, the client is going to be asking ChatChannel
for this interface. By using FChatUsers, we indirectly implement
IConnectionPointContainer using a contained object; we’re going
to extend ChatUser’s IUnknown.QueryInterface implementation
slightly to delegate returning the IConnectionPointContainer
interface from within FChatUsers. Figure 5 shows how this is
accomplished by overriding the ObjQueryInterface virtual
method, which is TComObject’s, and ultimately
TChatChannel ’s, IUnknown.QueryInterface implementation.

We’ve completed our server’s implementation. We’re now
ready to take a look at how the client actually connects to our
ChatChannel object.

Implementing the Client
Implementing the client side of the connection points
methodology is simpler than implementing the server. As we
studied previously, all the client needs to do is to ask the serv-
er object for the IConnectionPointContainer interface, call the
FindConnectionPoint method to retrieve the connection point
it’s interested in, and call the connection point’s Advise
method to connect to the server.

To disconnect from the server, the client simply follows the
previous steps, but it will need to call UnAdvise instead of
Advise. Figure 6 shows how our client connects to, and dis-
connects from, ChatChannel. The rest of the implementation,
such as the TChatEvent class and how the client handles chat
messages, remains the same as we’ve studied previously.

For the sake of completeness, I have also implemented
TChatChannel ’s ConnectUser and DisconnectUser methods
using the same procedures previously mentioned. This
should make our previous version of chat client still able to
connect to our connection points version of chat server.
Figure 7 shows the implementations of ConnectUser and
DisconnectUser for the TChatChannel server object.

Distributed Delphi
Conclusion
This two-part series has demonstrated two methods of
implementing call-backs in your Delphi 3 applications.
Last month’s topic was a hand-coded callback interface
procedure TfrmMain.ConnectUser;

var
cpChatUsers: IConnectionPointContainer;

cpChatEventSinks: IConnectionPoint;

begin
if (FChatConnection = nil) then begin
FChatConnection := CoChatConnection.Create;

{ Standard connect code for connection points. }
cpChatUsers := FChatConnection.ChatChannel as
IConnectionPointContainer;

cpChatUsers.FindConnectionPoint(

IChatEvent, cpChatEventSinks);

cpChatEventSinks.Advise(FChatEvent as IUnknown,

FUserId);

end; { if }
end;

procedure TfrmMain.DisconnectUser;

var
cpChatUsers: IConnectionPointContainer;

cpChatEventSinks: IConnectionPoint;

begin
if (FChatConnection <> nil) then begin
{ Standard disconnect code for connection points. }
cpChatUsers := FChatConnection.ChatChannel as
IConnectionPointContainer;

cpChatUsers.FindConnectionPoint(IChatEvent,

cpChatEventSinks);

cpChatEventSinks.UnAdvise(FUserId);

FChatConnection := nil;
end;

end;

Figure 6: Connecting to, and disconnecting from, ChatChannel.

function TChatChannel.ConnectUser(

const Callback: IChatEvent;

var UserId: Integer): WordBool;

var
cpChatUsers: IConnectionPointContainer;

cpChatEventSinks: IConnectionPoint;

begin
{ Standard connect code for connection points. }

cpChatUsers := Self as IConnectionPointContainer;

cpChatUsers.FindConnectionPoint(IChatEvent,

cpChatEventSinks);

cpChatEventSinks.Advise(Callback as IUnknown, UserId);

Result := True;

end;

function TChatChannel.DisconnectUser(

UserId: Integer): WordBool;

var
cpChatUsers: IConnectionPointContainer;

cpChatEventSinks: IConnectionPoint;

begin
{ Standard disconnect code for connection points. }

cpChatUsers := Self as IConnectionPointContainer;

cpChatUsers.FindConnectionPoint(IChatEvent,

cpChatEventSinks);

cpChatEventSinks.UnAdvise(UserId);

Result := True;

end;

Figure 7: ChatChannel’s ConnectUser and DisconnectUser
methods.

27 July 1998 Delphi Informant
manager; this month, we covered Connectable Objects, i.e.
connection points.

This article has shown the basic ideas behind the COM
connection points methodology. As we’ve seen, connection
points provide an extremely flexible, standard, and generic
way for implementing server-object to client-object com-
munication. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\JUL\DI9807BL.

Ever since Delphi 1 debuted, Binh Ly has found Windows programming to be
extremely rewarding and a lot of fun. Binh currently works as a Systems Analyst
at Brickhouse Data Systems, Inc., developing core functionality for Brickhouse’s
Business Object Architecture (BOA) application development framework. Binh
can be reached at bly@brickhouse.com.

Delphi and TAPI
Part I: An Introduction to Telephony Programming

The API Calls
Win32 / TAPI

By Major Ken Kyler and Alan C. Moore, Ph.D.

Figure 1: These are the st

28 July 1998 Delphi Informant
Line communications in general, and telephony in particular, have come a
long way since Windows 3.x. In the days of 16-bit Windows development,

you had to work at a low level, directly with the serial port. In 32-bit communi-
cations programming, there are new application programming interfaces (APIs)
that make the work considerably easier. The four essential ones are the Win32
Communications API, the WAVE API, the Messaging API (MAPI), and the
Telephony API (TAPI).
TAPI, in particular, has added a great deal of
convenience, both for the programmer and
the user. In this article, we’ll examine some of
the basic TAPI functions in detail, showing
you how to use them to initiate and manage
phone calls. Next month, we’ll build on the
basic information presented here and discuss
more advanced TAPI techniques. Let’s begin
with a brief overview of 32-bit Windows
communications and TAPI’s role.

Windows 95 Communications APIs
While the new APIs help a lot, communica-
tions programming for Windows 95 is hardly
trivial. We need to understand how the com-
munications process works, and we need to
understand the role of each of these APIs.
eps involved in an outgoing call.
First, we’ll examine the role of each of the
communications APIs.

The Win32 Communications API is used to
send or receive data in a streaming, interac-
tive mode. It’s particularly useful for setting
up the configuration and sending error-
sensitive, non-time-critical data. For example,
you would use this API for editing shared
documents, playing multi-player games, and
similar interactive situations. The WAVE API
is used to configure, and send or receive
error-tolerant, time-sensitive audio data in
real-time. MAPI is used to send and receive
files, faxes, e-mail, or any other non-interactive,
message-based transmissions. Our focus,
TAPI, is used to connect, control, and dis-
connect telephone calls.

It’s important to understand that these four
APIs are not mutually exclusive; they’re
often used in conjunction depending on
the task. TAPI, however, is at the heart of
it all; it is “Call Central” in Windows 95.
This series of articles is designed to give
you a basic understanding of how to use
TAPI to place (dial) a simple telephone call
and to provide you with some basic tools
on which to build. While Borland/INPRISE
didn’t include a unit for TAPI, program-
mers involved with Project JEDI (the
Delphi API Library) have converted the
C++ headers for us (see the sidebar “Project

Figure 2: These are the steps involved in an incoming call.

Figure 3: Phone Dialer, an application’s default call manager.

The API Calls
JEDI” on page 30). That conversion, TAPI.pas, is includ-
ed with the sample project accompanying this article (see
end of article for download details).

Now that we’ve examined the role of each of the essential
APIs, let’s take a look at what happens during the life-cycle
of a phone call.

The various steps involved in the life-cycle of a telephone
call apply to both voice and data calls (see Figure 1):

Outgoing calls begin life in the IDLE state.
When you pick up the handset, the call enters the
DIALTONE state (assuming the phone is plugged in
and the line isn’t dead).
When you start entering a phone number, the call enters
the DIALING state.
After you finish dialing the number, but before the other
phone starts ringing, the call is in the PROCEEDING
state.
It enters the RINGBACK state when the called phone
starts ringing ...
... unless the phone is busy, in which case it enters the
BUSY state (if there are teenagers around, this is the nor-
mal state).
As soon as the called party picks up the phone, the call
enters the CONNECTED state.
If you hang up, the call enters the DISCONNECTED
state and immediately transitions back to the IDLE state.

When making data, fax, or modem calls, the call may not
enter the CONNECTED state immediately when the called
modem answers the call. First the modems will negotiate
the transfer parameters and protocols, i.e. generate the
weird sounds you hear when two modems connect. During
this time, the call may enter the UNKNOWN state, or it
may remain in the RINGBACK state. Modems have a very
difficult time detecting CONNECTED, BUSY, and
RINGBACK states on interactive voice calls due to variation
in standards between phone switches.

As with outgoing calls, incoming calls start in the IDLE state
(see Figure 2). When the phone starts ringing, it enters the
OFFERING state. If two modems are trying to connect, the
call enters an ACCEPTED state when the call is answered,
and they immediately start negotiating transfer protocols and
parameters. Once the negotiation is completed, the call enters
the CONNECTED state. Hang up and the call enters the
DISCONNECTED state, then returns to the IDLE state.

Getting Started
All Windows 95 communications revolve around a call man-
ager, which is also referred to as a telephone service provider.
The default call-manager application is “Phone Dialer” (see
Figure 3). You can create a custom call manager; in fact, you
must if you want to use any of the advanced TAPI functions.

There are two basic ways to initiate a telephone call using
TAPI. You can use the function TapiRequestMakeCall, or you
can use the more elaborate LineMakeCall. TapiRequestMakeCall
29 July 1998 Delphi Informant
handles everything for you by invoking the default call manag-
er. The call manager then handles everything else. The demon-
stration project included with this article shows both methods.
LineMakeCall is a different story altogether. As you’ll see, it’s
anything but trivial.

The Hard Way
The call manager must do a lot of work. It must create a
line, place the call, handle the asynchronous callbacks, and
dispose of resources. However, if you’re willing to go to the
trouble of creating a custom call manager, you will have the
basis for a very powerful telephony application. Let’s take a
look at each of the basic steps previously mentioned: ini-
tializing TAPI, placing the call, handling the callbacks, and
hanging up and disposing of resources.

Step 1: Initializing TAPI
Initializing TAPI is a two-step process: First you call
LineInitialize, then LineNegotiateAPIVersion. LineInitialize

The API Calls
initializes TAPI for use by the call-manager application. It
initializes the application’s use of TAPI.DLL, registers the
application’s callback mechanism, and returns the number
of logical line devices available to the application (using
the lpdwNumDevs parameter). If you’re new to all of this,
and are wondering what a line device is, the Win32
Programmer’s Reference provides this definition: “A line
device is a physical device, such as a fax board, a modem,
or an ISDN card, that is connected to an actual telephone
line. Line devices support telephonic capabilities by allow-
ing applications to send or receive information to or from
a telephone network. A line device is the logical represen-
tation of a physical line device, one of the two device
classes supported by TAPI.”

Simply stated, a line device is the dwDeviceID parameter
required in all Line... functions. For example, the TAPI.pas
file defines LineInitialize as:

function LineInitialize(lphLineApp: LPHLINEAPP;

hInstance: HINSTANCE; lpfnCallback: TLINECALLBACK;

lpszAppName: LPCSTR; lpdwNumDevs: LPDWORD): LONG;

The first parameter, lphLineApp, is a handle for this usage
instance of TAPI. The second parameter, hInstance, is the
30 July 1998 Delphi Informant
instance of the call-manager application. The third para-
meter, lpfnCallback, is the address of the callback function.
The callback function is used to receive the asynchronous
responses from the line. The fourth parameter,
lpszAppName, is the name of the application originating or
accepting a call. If you leave it null, Windows will use the
file name of the calling application by default. The last
parameter, lpdwNumDevs, is the number of line devices
available; LineInitialize returns this value. (If you want to
see what line devices are available on your computer, open
the Control Panel and double-click on Modems.)

LineInitialize returns zero if successful. If LineInitialize
returns LINEERR_REINIT, then the application should
try LineInitialize again. LINEERR_REINIT is a non-fatal
error; it simply means “try again.” See the Win32
Programmer’s Reference for an explanation of the other error
values. You should always check the return value of
LineInitialize to determine if there are any configuration
problems with the telephony system.

LineNegotiateAPIVersion tells the call-manager application
which version of TAPI to use. Because it has several ver-
sions — each with different capabilities — TAPI is one of
the few Windows APIs that requires version negotiation.
Windows 95 uses TAPI version 1.4, and Windows NT uses
version 2.0. Microsoft has recently released a beta of ver-
sion 2.1. Newer versions include added or changed fea-
tures/functions. This function allows the developer to use a
particular set of functions and ensure that future versions
of TAPI will use those functions.

LineNegotiateAPIVersion is defined as:

function LineNegotiateAPIVersion(hLineApp: HLINEAPP;

dwDeviceID: DWORD; dwAPILowVersion: DWORD;

dwAPIHighVersion: DWORD; lpdwAPIVersion: LPDWORD;

lpExtensionID: LPLINEEXTENSIONID): LONG;

The first parameter, hLineApp, is the TAPI usage handle
returned in the call to LineInitialize. The second parameter,
dwDeviceID, specifies the device to be used. If you intend to
use more than one device, you must negotiate the API ver-
sion for each device. Recall that LineInitialize returns the
number of devices available in the lpdwNumDevs parameter.
The third parameter, dwAPILowVersion, specifies the lowest
version of TAPI to use. The fourth parameter,
dwAPIHighVersion, specifies the highest version of TAPI to
use. Windows will select the highest version in this range that
is supported, and return it in the fifth parameter,
lpdwAPIVersion. The last parameter, lpExtensionID, identifies
TAPI extensions that the driver supports. At present, UNI-
MODEM doesn’t support any extension, so you can ignore,
but not omit, this parameter. LineNegotiateAPIVersion returns
zero if successful.

Unless you explicitly shut down TAPI, you must initialize
it only once. If you terminate calls with LineShutDown,
however, you will need to initialize TAPI again (as we’ll see

in Step 4).
The basic TAPI conversions we used in the example pro-
gram accompanying this article were originally written by
Alex Staubo and further developed by a Project JEDI
Team (Team One). As I wrote in the December, 1997
Delphi Informant “Symposium,” Project JEDI, the
Delphi API Library, began in response to a query in the
COBB DDJ-Thread mailing list: “Why does there have
to be such a long waiting period for a new technology’s
API to become available in Delphi?” Project JEDI is the
answer to that question: There doesn’t have to be and we
can do something about it. Expressed in Delphi terms,
Project JEDI can be defined as:

ProjectJEDI := TDelphiAPI.Create(DelphiCommunity);

A lot has happened since December’s “Symposium” piece
was written. There are now six complete teams, several of
which are in the midst of conversions, including TAPI,
MAPI, Direct X V5, and the ODBC/SQL API. Soon
there will be ten teams, with more on the horizon. Each
team includes converters, testers, and Help-file writers.
Ken Kyler and I are part of Team Eight (although TAPI
was done by Team One), Ken as a tester and me as a
Help-file writer. Most of the other administrative people
are involved with teams as well. Everyone’s getting their
hands dirty!

To find out more about Project JEDI, or to get involved,
visit our Web site at http://www.delphi-jedi.org.

— Alan C. Moore, Ph.D.

Project JEDI

http://www.delphi-jedi.org

Figure 4: TAPI Call Privileges (dwPrivileges) affect how much control an application has.

dwPrivileges Value Meaning

LINECALLPRIVILEGE_NONE Application makes outgoing calls.
LINECALLPRIVILEGE_MONITOR Application monitors incoming/outgoing calls.
LINECALLPRIVILEGE_OWNER Application owns incoming calls of the types specified in dwMediaModes (Figure 5).
LINECALLPRIVILEGE_MONITOR Application owns incoming calls of the types specified in dwMediaModes, but ...
LINECALLPRIVILEGE_OWNER ... if it can’t be a call’s owner, it wants to be a monitor.

The API Calls

dwMediaModes Value Meaning

LINEMEDIAMODE_UNKNOWN Application handles unclassified calls of unknown media type.
LINEMEDIAMODE_INTERACTIVEVOICE Application handles interactive voice (human user) calls.
LINEMEDIAMODE_AUTOMATEDVOICE Voice energy is present on the call. (Voice handled locally by automated

application.)
LINEMEDIAMODE_DATAMODEM Application handles data modem calls.
LINEMEDIAMODE_G3FAX Application handles group 3 fax calls.
LINEMEDIAMODE_TDD Application handles TDD (Telephony Devices for the Deaf) calls.
LINEMEDIAMODE_G4FAX Application handles group 4 fax calls.
LINEMEDIAMODE_DIGITALDATA Application handles digital data calls.
LINEMEDIAMODE_TELETEX Application handles teletex calls.
LINEMEDIAMODE_VIDEOTEX Application handles videotex calls.
LINEMEDIAMODE_TELEX Application handles telex calls.
LINEMEDIAMODE_MIXED Application handles ISDN mixed media calls.
LINEMEDIAMODE_ADSI Application handles ADSI (Analog Display Services Interface) calls.
LINEMEDIAMODE_VOICEVIEW Call’s media mode is VoiceView.

Figure 5: TAPI’s Media Modes (dwMediaModes) affect different kinds of calls.
Step 2: Placing the Call
After initializing TAPI, open a line with LineOpen and dial
the appropriate number with LineMakeCall. LineOpen allows
you to specify what communications functions your applica-
tion can perform, including answering calls, monitoring calls,
or initiating calls. It’s defined as follows:

function LineOpen(hLineApp: HLINEAPP; dwDeviceID: DWORD;

lphLine: LPHLINE; dwAPIVersion: DWORD;

dwExtVersion: DWORD; dwCallbackInstance: DWORD;

dwPrivileges: DWORD; dwMediaModes: DWORD;

const lpCallParams: LPLINECALLPARAMS): LONG;

The first parameter, hLineApp, is a handle to the usage
instance of TAPI. It was returned by the first call to
LineInitialize in Step 1. The second parameter,
dwDeviceID, is an integer value that identifies which logi-
cal device to open. The third parameter, lphLine, is the
handle to the line opened by Windows. The fourth para-
meter, dwAPIVersion, is the API version returned in
LineNegotiateAPIVersion in Step 1. The fifth parameter,
dwExtVersion, is the extension version number the applica-
tion and service provider will use (normally zero). The
sixth parameter isn’t used by TAPI, so we’ll ignore it (it’s
normally set to zero). The seventh parameter, dwPrivileges,
tells the call manager how to handle calls on the line. See
Figure 4 for the values that can be used. This information,
and that in Figures 5 and 6, is based on the Win32
Programmer’s Reference (see that file for details).

The eighth parameter, dwMediaModes, tells Windows what
types of calls will be answered or monitored. Please
31 July 1998 Delphi Informant
note that this affects incoming calls only. Therefore, it’s
possible to have 14 applications handling calls — one for
each type.

The last parameter, lpCallParams, is a pointer to a
TLineCallParams structure. This is only used if
LINEMAPPER is used; otherwise this parameter is ignored
and must be set to nil. This sets the parameters of the “line.”
(We won’t be working with this now, but in our next article
on TAPI, we’ll show you how to use it.) LineOpen returns
zero if successful, or a negative error number if an error
occurs. See the Win32 Programmer’s Reference for the possible
return values and a discussion of the error causes.

What have we done so far? We’ve opened the line, and the
application is waiting for us to dial a number. To place the
call, we use the LineMakeCall function. That’s over-simpli-
fying things a bit; first, we must “create” a call. Calls can
be managed: You can put them on hold, forward them,
and so on. In TAPI, calls and lines are managed separately.
The function we use, LineMakeCall, is defined as follows:

function LineMakeCall(hLine: HLINE; lphCall:LPHCALL;

lpszDestAddress: LPCSTR; dwCountryCode: DWORD;

const lpCallParams: LPLINECALLPARAMS): LONG;

The first parameter is the handle to the line opened with
LineOpen. The next parameter, lphCall, is a pointer to the call
handle. The next parameter, lpszDestAddress, is the phone num-
ber to dial. The data type is PChar and the phone number must
be in canonical format (see the sidebar “Canonical Address

Message Meaning

LINE_ADDRESSSTATE Status of an address on an open line has changed. (Use LineGetAddressStatus to get cur-
rent status of the address.)

LINE_CALLINFO A certain call’s information has changed. (Use LineGetCallInfo to get current call information.)
LINE_CALLSTATE Status of specified call has changed. (Used often; see states in Figures 1 and 2.) Use

LineGetCallStatus to get detailed information about call’s status.
LINE_CLOSE Specified line device has been forcibly closed; associated handles are no longer valid.
LINE_CREATE New line device has been created.
LINE_DEVSPECIFIC Provides device-specific information about events related to line, an address, or a call.
LINE_DEVSPECIFICFEATURE Provides device-specific information about events related to line, an address, or a call.
LINE_GATHERDIGITS Current buffered digit-gathering request has been terminated or is canceled.
LINE_GENERATE Current digit or tone generation has been terminated or canceled.
LINE_LINEDEVSTATE A line device’s state has changed. Use GetLineDevStatus to get new status.
LINE_MONITORDIGITS Digit has been detected. Controlled with the LineMonitorDigits function.
LINE_MONITORMEDIA A call’s media mode has changed. Controlled with the LineMonitorMedia function.
LINE_MONITORTONE Tone has been detected. Controlled with the LineMonitorTones function.
LINE_REPLY Reports the results of asynchronously completed function calls.
LINE_REQUEST Reports a new request from another application.

Figure 6: Callback messages used by TAPI.

The API Calls

Figure 7: Use the Call Status dialog box to get connected.
Formats” on page 33). The fourth parameter, dwCountryCode, is
the country in which the caller resides (0 for the US).

Lastly, lpCallParams, is a pointer to a TLineCallParams
structure. This specifies the characteristics of the call. We
also saw this structure in LineOpen where it was used to
set the parameters for the “line.” Here we set the parame-
ters for the “call.” If you’re making a data call, you must
create this structure and fill the dwMediaMode value with
LINEMEDIAMODE_DATAMODEM. (We’ll discuss this
more in the next article.) Otherwise, set it to nil. When
this value is passed as nil, LineMakeCall automatically
places an interactive voice call regardless of what privileges
were set when the line was opened.

Interactive voice calls will display a dialog box like the one
shown in Figure 7. When you click on Talk, the dialog box
disappears and a “connected” message is sent to the call-
back regardless of the actual state of the call. It also tells
the modem to connect the call to the handset. Clicking
Hang Up does exactly what you think: It disconnects the
call, after which the call usually enters the IDLE state.
LineMakeCall returns zero if successful, or a negative error
number if an error occurs (see the Win32 Programmer’s
Reference for details).
32 July 1998 Delphi Informant
It’s been pretty easy so far, right? Now things get more involved.

LineMakeCall is asynchronous. The call is complete when the
dwParam2 parameter of the corresponding LINE_REPLY
callback message returns zero. If you have a telephone exten-
sion to dial, you follow a call to LineMakeCall with one to
LineDial. You must wait for LineMakeCall to complete asyn-
chronously before using LineDial. LineDial is defined as:

function lineDial(hCall: HCALL; lpszDestAddress: LPCSTR;

dwCountryCode: DWORD): LONG;

The first parameter is the handle to the open call returned by
LineMakeCall. The second parameter is the number to call
(data type: PChar; canonical format). The third parameter is
the country code (zero if you’re calling from the US). You can
make as many calls as necessary to LineDial. If you’re going
to use LineDial, you must terminate lpszDestAddress with a
semicolon in both LineMakeCall and LineDial. This indicates
that more dialing will be done using LineDial. The next step
involves callback functions.

Step 3: Handling the Callbacks
The callback function handles the messages from asynchro-
nous operations such as LineMakeCall. Keep this in mind
when writing callbacks: All callbacks occur in the application’s
context. The callback must reside in a dynamic link library
(DLL) or the application module:

TLINECALLBACK = procedure(hDevice, dwMessage, dwInstance,
dwParam1, dwParam2, dwParam3: DWORD);

The hDevice parameter specifies a handle to a line device or a
call associated with the callback. The nature of this handle (line
handle or call handle) can be determined by dwMessage. The
dwMessage parameter specifies a line or call-device message.
The dwInstance parameter specifies the callback instance data
passed back to the application in the callback. Note that this is
not interpreted by TAPI. Lastly, the parameters dwParam1,

The API Calls
dwParam2, and dwParam3 specify parameters for the message.
Again, see Figure 6 for the possible message events.

Here, we’ll be concerned with three callback messages:
LINE_LINEDEVSTATE, LINE_CALLSTATE, and
LINE_REPLY. LINE_LINEDEVSTATE has one very
important return message, LINEDEVSTATE_REINIT, that
indicates the configuration of a line device has changed. To
become aware of this change, the application must reinitial-
ize its use of TAPI. Generally, this message is sent when the
telephony system has been changed through the Windows
Control Panel.

Two other messages are related to PCMIA cards:
LINEDEVSTATE_INSERVICE and
LINEDEVSTATE_OUTOFSERVICE. They are sent
when a PCMIA card is plugged in or removed.
33 July 1998 Delphi Informant
The LINE_CALLSTATE message is sent to the callback
function when the status of the call has changed. Many
LINE_CALLSTATE messages will be received during the
duration of a call. Four deserve special attention:
LINECALLSTATE_IDLE, LINECALLSTATE_
DISCONNECTED, LINECALLSTATE_RINGBACK,
and LINECALLSTATE_BUSY. As stated previously, the BUSY
signal and the RINGBACK are very difficult to determine for
interactive voice calls. Therefore you should not rely on
receiving LINECALLSTATE_RINGBACK and
LINECALLSTATE_BUSY to spawn critical processes
when using interactive voice calls. The
LINECALLSTATE_DISCONNECTED message may or may
not be detected, but disconnected calls always receive
LINECALLSTATE_IDLE.

Recall that we said LineMakeCall completes asynchro-
nously? LINE_REPLY returns zero in dwParam2 if
LineMakeCall was successful. LineMakeCall isn’t
complete until this message is received. A value of zero
in dwParam2 indicates success; any negative value
indicates that LineMakeCall failed.

Step 4: Hanging Up and Disposing of Resources
Now you’re done chatting with your friends and it’s time to
hang up. This is the easiest part — if you only have one line
open. LineShutDown will terminate all calls and shut down
TAPI. It’s a well-behaved function and cleans up all resources
associated with any calls:

function LineShutDown(hLineApp: HLINEAPP): LONG;

The parameter passed is the handle to the open line
returned in the call to LineInitialize in Step 1. This termi-
nates the TAPI instance; any further calls must reinitialize
TAPI. However, if you have several calls open and being
managed by the same application, or if you plan on making
more calls, then you should close each one separately. You
can do this in one of two ways: 1) call LineDrop followed
by LineDeallocateCall; or, 2) call LineClose. LineClose, like
LineShutDown, will free all open resources. These functions
are straightforward. See the Win32 Programmer’s Resource
for more information.

The Demonstration Project and a Preview
As you have no doubt seen, even working at the most basic
level with TAPI is hardly a trivial matter. To help you bet-
ter understand the process, we’ve included a demonstration
project (see Listing Two beginning on page 34). Take a few
minutes to read through it. It’s a bare-bones project
designed to show how to make an interactive voice call.
The assumption is you will only be placing outgoing,
interactive-voice telephone calls.

Next month we’ll explain some of the more intricate
TAPI functions, such as how to use LINEMAPPER in
LineOpen, how to get device capabilities, how to enumer-
ate available devices, and how to get modem lights. See
you then.
Phone number formats vary a bit from one country to
another. Fortunately, Windows 95 provides a standard
international format called the canonical address format
that can represent any phone number, anywhere in the
world. TAPI functions use this format, so it’s important
to understand it. In the sample project accompanying
this article, we’ve encapsulated this format in a MaskEdit
control to force adherence to its requirements.

What are the requirements and the structure of the
canonical address format? The format always begins with
the plus character (+) followed by the digits identifying
the country, the area code (if there is one), and the local
number. If there’s an area code, it must be in parentheses.
As an example, here’s the mask we used for the MaskEdit
control in this project:

!9 \(999\) 000-0000;1;_

You’ll notice there’s no plus sign at the beginning. The
program appends that character to the beginning of the
string. Also note the literal parenthetical characters, ’\(’
and ’\)’, to force adherence to the area code format.
The above mask would translate into an actual phone
number as follows:

_ (800) 123-4567

Now, at least, we can send phone numbers between
Windows API functions. Dialing a phone number often
involves more, however. You may have to add digits like
1, 8, or 9 for long distance, or to get an outside line. So
we also need a dialable address — one that will be recog-
nized by the phone system we’re hooked into. The sam-
ple project handles those details for us, as the comments
in it show.

— Alan C. Moore, Ph.D.

Canonical Address Formats

The API Calls
References
Communications Programming for Windows 95, Charles A.
Mirho and Andre Terrisse, Microsoft Press, 1996.
Windows 95 Multimedia and ODBC API Bible, Richard J.
Simon, Tony Davis, John Eaton, R. Murray Goertz, Waite
Group Press, 1996.

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\JUL\DI9807AM.

Major Ken Kyler is the Air National Guard Systems Analyst for the Defense
Integrated Military Human Resources System (DIMHRS). He has been program-
ming with Delphi for two years. He is also a free-lance technical writer with arti-
cles published in several Delphi magazines. You can reach him at
KylerK@PR.OSD.MIL.

Alan Moore is a Professor of Music at Kentucky State University, specializing in
music composition and music theory. He has been developing education-related
applications with the Borland languages for more than 10 years. He has pub-
lished a number of articles in various technical journals. Using Delphi, he spe-
cializes in writing custom components and implementing multimedia capabilities
in applications, particularly sound and music. You can reach Alan on the Internet
at acmdoc@aol.com.
Begin Listing Two — TAPI Example Application
unit TAPIU_1;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls, ExtCtrls, Mask;

type
TForm1 = class(TForm)
Memo: TMemo;

Panel1: TPanel;

ePhoneNum: TMaskEdit;

btnDial: TButton;

Label1: TLabel;

btnHangup: TButton;

rbDefault: TRadioButton;

rbCallManager: TRadioButton;

procedure btnDialClick(Sender: TObject);

procedure FormCloseQuery(Sender: TObject;

var CanClose: Boolean);

procedure FormCreate(Sender: TObject);

procedure btnHangupClick(Sender: TObject);

private
34 July 1998 Delphi Informant

function TapiInitialize: Boolean;
procedure CreateCallManager;

public
{ ShutdownCallManager is called from CallBack function,

so ShutdownCallManager must be declared public. }
function ShutdownCallManager: Boolean;

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

uses
Tapi;

var
FLineApp: HLINEAPP;

FNumDevs,

FVersion: Integer;

FExt: TLINEEXTENSIONID;

FLine: HLINE;

FLineCallParams: TLineCallParams;

FLineOpen: Boolean;

FHCall: HCALL;

FCountryCode: Integer;

// Value of device ID to initialize, 0..NumDevs
FDev: Integer;

const
HiVer = $00020000; // Highest API version wanted (2.0).
LoVer = $00010004; // Lowest API version accepted (1.4).

// Handle messages from the line.
procedure LineCallBack(hDevice, dwMessage, dwInstance,

dwParam1, dwParam2, dwParam3 : DWORD); stdcall;
begin
with Form1, Memo.Lines do begin
case dwMessage of
// Report asynchronous responses.
LINE_CALLSTATE: begin
case dwParam1 of
LINECALLSTATE_IDLE: begin

Add('LCB (LINE_CALLSTATE): ' +

'The call is idle; no call exists.');

ShutdownCallManager;

end;
LINECALLSTATE_OFFERING:

Add('LCB (LINE_CALLSTATE): ' +

'Call is being offered to the station.');

LINECALLSTATE_ACCEPTED:

Add('LCB (LINE_CALLSTATE): ' +

'The call was offered and accepted.');

LINECALLSTATE_DIALTONE:

Add('LCB (LINE_CALLSTATE): ' +

'The call is receiving a dial tone.');

LINECALLSTATE_DIALING:

Add('LCB (LINE_CALLSTATE): Dialing ' +

Form1.ePhoneNum.Text);

LINECALLSTATE_RINGBACK:

Add('LCB (LINE_CALLSTATE): ' +

'The call is receiving ringback.');

LINECALLSTATE_BUSY: begin // Difficult to detect.
case dwParam2 of
LINEBUSYMODE_STATION:

Add('LCB (LINE_CALLSTATE): ' +

'Busy; called party's station busy.');

LINEBUSYMODE_TRUNK:

Add('LCB (LINE_CALLSTATE): ' +

'Busy; trunk or circuit is busy.');

LINEBUSYMODE_UNKNOWN:

Add('LCB (LINE_CALLSTATE): ' +

The API Calls
'Busy; specific mode is unknown.');

LINEBUSYMODE_UNAVAIL:

Add('LCB (LINE_CALLSTATE): ' +

'Busy; specific mode is unavailable.');

else
Add('LCB (LINE_CALLSTATE): ' +

'Call receiving unidentifiable busy tone.');

end;
ShutdownCallManager;

end;
LINECALLSTATE_SPECIALINFO:

Add('LCB (LINE_CALLSTATE): ' +

'Special information sent by network.');

LINECALLSTATE_CONNECTED:

Add('LCB (LINE_CALLSTATE): ' +

'Call established and connection made.');

LINECALLSTATE_PROCEEDING:

Add('LCB (LINE_CALLSTATE): ' +

'Dialing completed; call proceeding.');

LINECALLSTATE_ONHOLD:

Add('LCB (LINE_CALLSTATE): ' +

'The call is on hold by the switch.');

LINECALLSTATE_CONFERENCED:

Add('LCB (LINE_CALLSTATE): Call is a member ' +

' of a multi-party conference call.');

LINECALLSTATE_ONHOLDPENDCONF:

Add('LCB (LINE_CALLSTATE): Call is on hold ' +

'while being added to a conference.');

LINECALLSTATE_DISCONNECTED: begin
Add('LCB (LINE_CALLSTATE): ' +

'The line has been disconnected.');

case dwParam2 of
LINEDISCONNECTMODE_NORMAL:

Add(#9 + 'A "normal" disconnect request.');

LINEDISCONNECTMODE_UNKNOWN:

Add(#9 +

'Unknown reason for disconnect request.');

LINEDISCONNECTMODE_REJECT:

Add(#9 + 'Remote user rejected the call.');

LINEDISCONNECTMODE_PICKUP:

Add(#9 + 'Call picked up from elsewhere.');

LINEDISCONNECTMODE_FORWARDED:

Add(#9 + 'Call was forwarded by switch.');

LINEDISCONNECTMODE_BUSY:

Add(#9 +'Remote user's station is busy.');

LINEDISCONNECTMODE_NOANSWER:

Add(#9 +

'Remote user's station does not answer.');

LINEDISCONNECTMODE_BADADDRESS:

Add(#9 +'Destination address in invalid.');

LINEDISCONNECTMODE_UNREACHABLE:

Add(#9 +

'Remote user could not be reached.');

LINEDISCONNECTMODE_CONGESTION:

Add(#9 + 'The network is congested.');

LINEDISCONNECTMODE_INCOMPATIBLE:

Add(#9 + 'Remote user's station ' +

'equipment is incompatible');

LINEDISCONNECTMODE_UNAVAIL:

Add(#9 + 'Reason for the disconnect ' +

'is unavailable');

end;
end;
LINECALLSTATE_UNKNOWN:

Add('LCB (LINE_CALLSTATE): ' +

'The state of the call is not known.');

end;
end;
LINE_LINEDEVSTATE:

case dwParam1 of // Incomplete list.
LINEDEVSTATE_RINGING:

Add('LCB (LINE_LINEDEVSTATE): ' +

'(Ringing) Ring, ring, ring...');
35 July 1998 Delphi Informant
LINEDEVSTATE_CONNECTED:

Add('LCB (LINE_LINEDEVSTATE): Connected...');

LINEDEVSTATE_DISCONNECTED:

Add('LCB (LINE_LINEDEVSTATE): Disconnected.');

LINEDEVSTATE_REINIT:

// Line device has changed or been modified.
if (dwParam2 = 0) then begin

Add('LCB (LINE_LINEDEVSTATE): ' +

'Shutdown required');

ShutdownCallManager;

end;
end;

LINE_REPLY:

if (dwParam2 = 0) then
Add('LCB (LINE_REPLY): ' +

'LineMakeCall completed successfully')

else
Add('LCB (LINE_REPLY): LineMakeCall failed');

end;
end;

end;
// --

procedure TForm1.btnDialClick(Sender: TObject);

var
ErrNo: longint;

S: string;
begin
if rbCallManager.Checked then begin
btnDial.Enabled := False; // Disable dial button.
btnHangup.Enabled := True; // Enable hangup button.
CreateCallManager;

end
else begin // Use default call manager.
// Not necessary to disable the buttons, the default
// call manager handles everything.
ErrNo := TapiRequestMakeCall(PChar(ePhoneNum.Text), '',

'Some person', '');

case ErrNo of
0: S := 'success!'; // Success.
TAPIERR_NOREQUESTRECIPIENT: S :=

'TAPIERR_NOREQUESTRECIPIENT';

TAPIERR_INVALDESTADDRESS: S :=

'TAPIERR_INVALDESTADDRESS';

TAPIERR_REQUESTQUEUEFULL: S :=

'TAPIERR_REQUESTQUEUEFULL';

TAPIERR_INVALPOINTER: S := 'TAPIERR_INVALPOINTER';

else
S := 'unknown value (' + IntToStr(ErrNo) + ')';

end;
Memo.Lines.Add('TapiRequestMakeCall returned: ' + S);

end;
end;

procedure TForm1.FormCloseQuery(Sender: TObject;

var CanClose: Boolean);

begin
// If the custom call manager was used,
// make sure to free resources.
if FLineOpen then
CanClose := ShutdownCallManager;

end;

function TForm1.TapiInitialize: Boolean;

var
ErrNo: Longint;

S: string;
begin
Result := False;

// Initialize TAPI for use by custom call manager.
FDev := 0;

FCountryCode := 0;

FVersion := 0;

The API Calls
ErrNo := LineInitialize(@FLineApp, MainInstance,

LineCallback, '', @FNumDevs);

case ErrNo of
0: Memo.Lines.Add('LineInitialize was successful');

LINEERR_INVALAPPNAME: S := 'LINEERR_INVALAPPNAME';

LINEERR_OPERATIONFAILED: S :='LINEERR_OPERATIONFAILED';

LINEERR_INIFILECORRUPT: S := 'LINEERR_INIFILECORRUPT';

LINEERR_RESOURCEUNAVAIL: S :='LINEERR_RESOURCEUNAVAIL';

LINEERR_INVALPOINTER: S := 'LINEERR_INVALPOINTER';

LINEERR_REINIT: S := 'LINEERR_REINIT - (try again)';

LINEERR_NODRIVER: S := 'LINEERR_NODRIVER';

LINEERR_NODEVICE: S := 'LINEERR_NODEVICE';

LINEERR_NOMEM: S := 'LINEERR_NOMEM';

LINEERR_NOMULTIPLEINSTANCE: S :=

'LINEERR_NOMULTIPLEINSTANCE';

else
S := 'Unknown Reason (' + IntToStr(ErrNo) + ')';

end;

// Show how many devices available.
Memo.Lines.Add('Devices available: '+IntToStr(FNumDevs));

if (ErrNo <> 0) then begin
Memo.Lines.Add(

'LineInitialize failed with error: ' + S);

Exit;

end
else

ErrNo := LineNegotiateAPIVersion(FLineApp, FDev, LoVer,

HiVer, @FVersion, @FExt);

if (ErrNo <> 0) then begin
case ErrNo of

LINEERR_BADDEVICEID: S := 'LINEERR_BADDEVICEID';

LINEERR_NODRIVER: S := 'LINEERR_NODRIVER';

LINEERR_INCOMPATIBLEAPIVERSION: S :=

'LINEERR_INCOMPATIBLEAPIVERSION';

LINEERR_OPERATIONFAILED: S :=

'LINEERR_OPERATIONFAILED';

LINEERR_INVALAPPHANDLE: S :=

'LINEERR_INVALAPPHANDLE';

LINEERR_RESOURCEUNAVAIL: S :=

'LINEERR_RESOURCEUNAVAIL';

LINEERR_INVALPOINTER: S := 'LINEERR_INVALPOINTER';

LINEERR_UNINITIALIZED: S := 'LINEERR_UNINITIALIZED';

LINEERR_NOMEM: S := 'LINEERR_NOMEM';

LINEERR_OPERATIONUNAVAIL: S :=

'LINEERR_OPERATIONUNAVAIL';

LINEERR_NODEVICE: S := 'LINEERR_NODEVICE';

else
S := 'Unknown Reason (' + IntToStr(ErrNo) + ')';

end;
LineShutDown(FLineApp);

Memo.Lines.Add(

'LineNegotiateAPIVersion failed with error: ' + S);

end
else

Result := True;

end;

procedure TForm1.FormCreate(Sender: TObject);

begin
FLineOpen := False;

btnHangup.Enabled := False; // Disable hangup button.
if not TapiInitialize then begin
Memo.Clear;

Memo.Lines.Add('Failed to initialize TAPI');

btnHangup.Enabled := False; // Disable hangup button.
btnDial.Enabled := False; // Disable dial button.

end;
end;

procedure TForm1.btnHangupClick(Sender: TObject);
36 July 1998 Delphi Informant
begin
if rbCallManager.Checked then

if not ShutdownCallManager then
Exit;

end;

procedure TForm1.CreateCallManager;

var
S: string;
ErrNo: longint;

begin
Memo.Clear;

// If a line is open, no need to initialize TAPI.
if not FLineOpen then

if not TapiInitialize then begin
Memo.Lines.Add('Failed to initialize TAPI');

Exit;

end;
// Open a line and get the line handle.
ErrNo := LineOpen(FLineApp, FDev, @FLine, FVersion, 0, 0,

LINECALLPRIVILEGE_NONE,

LINEMEDIAMODE_INTERACTIVEVOICE, nil);
case ErrNo of

0: S := 'Line is open'; // Success, so drop through.
LINEERR_ALLOCATED: S := 'LINEERR_ALLOCATED';

LINEERR_BADDEVICEID: S := 'LINEERR_BADDEVICEID';

LINEERR_INCOMPATIBLEAPIVERSION: S :=

'LINEERR_INCOMPATIBLEAPIVERSION';

LINEERR_INCOMPATIBLEEXTVERSION: S :=

'LINEERR_INCOMPATIBLEEXTVERSION';

LINEERR_INVALAPPHANDLE: S := 'LINEERR_INVALAPPHANDLE';

LINEERR_INVALMEDIAMODE: S := 'LINEERR_INVALMEDIAMODE';

LINEERR_INVALPOINTER: S := 'LINEERR_INVALPOINTER';

LINEERR_INVALPRIVSELECT: S :='LINEERR_INVALPRIVSELECT';

LINEERR_NODEVICE: S := 'LINEERR_NODEVICE';

LINEERR_LINEMAPPERFAILED: S :=

'LINEERR_LINEMAPPERFAILED';

LINEERR_NODRIVER: S := 'LINEERR_NODRIVER';

LINEERR_NOMEM: S := 'LINEERR_NOMEM';

LINEERR_OPERATIONFAILED: S :='LINEERR_OPERATIONFAILED';

LINEERR_RESOURCEUNAVAIL: S :='LINEERR_RESOURCEUNAVAIL';

LINEERR_STRUCTURETOOSMALL: S :=

'LINEERR_STRUCTURETOOSMALL';

LINEERR_UNINITIALIZED: S := 'LINEERR_UNINITIALIZED';

LINEERR_REINIT: S := 'LINEERR_REINIT';

LINEERR_OPERATIONUNAVAIL: S :=

'LINEERR_OPERATIONUNAVAIL';

else
S := 'LineOpen returned an unknown value of ' +

IntToStr(ErrNo);

end;

Memo.Lines.Add('LineOpen reports: ' + S);

if (ErrNo <> 0) then
Exit

else
FLineOpen := True;

{ Create and fill the LineCallParams structure; mandatory
for data calls, optional for voice calls. }

with FLineCallParams do begin
dwTotalSize := sizeof(FLineCallParams);

dwBearerMode := LINEBEARERMODE_VOICE;

dwMediaMode := LINEMEDIAMODE_INTERACTIVEVOICE;

end;

// Now place the call.
ErrNo := LineMakeCall(FLine, @FHCall,

PChar(ePhoneNum.Text), FCountryCode, @FLineCallParams);

case ErrNo of
0: S := 'LineMakeCall succeeded'; // Success.
LINEERR_ADDRESSBLOCKED: S := 'LINEERR_ADDRESSBLOCKED';

LINEERR_BEARERMODEUNAVAIL: S :=

The API Calls
'LINEERR_BEARERMODEUNAVAIL';

LINEERR_CALLUNAVAIL: S := 'LINEERR_CALLUNAVAIL';

LINEERR_DIALBILLING: S := 'LINEERR_DIALBILLING';

LINEERR_DIALDIALTONE: S := 'LINEERR_DIALDIALTONE';

LINEERR_DIALPROMPT: S := 'LINEERR_DIALPROMPT';

LINEERR_DIALQUIET: S := 'LINEERR_DIALQUIET';

LINEERR_INUSE: S := 'LINEERR_INUSE';

LINEERR_INVALADDRESS: S := 'LINEERR_INVALADDRESS';

LINEERR_INVALADDRESSID: S := 'LINEERR_INVALADDRESSID';

LINEERR_INVALADDRESSMODE: S :=

'LINEERR_INVALADDRESSMODE';

LINEERR_INVALBEARERMODE: S :='LINEERR_INVALBEARERMODE';

LINEERR_INVALCALLPARAMS: S :='LINEERR_INVALCALLPARAMS';

LINEERR_INVALCOUNTRYCODE: S :=

'LINEERR_INVALCOUNTRYCODE';

LINEERR_INVALLINEHANDLE: S :='LINEERR_INVALLINEHANDLE';

LINEERR_INVALLINESTATE: S := 'LINEERR_INVALLINESTATE';

LINEERR_INVALMEDIAMODE: S := 'LINEERR_INVALMEDIAMODE';

LINEERR_INVALPARAM: S := 'LINEERR_INVALPARAM';

LINEERR_INVALPOINTER: S := 'LINEERR_INVALPOINTER';

LINEERR_INVALRATE: S := 'LINEERR_INVALRATE';

LINEERR_NOMEM: S := 'LINEERR_NOMEM';

LINEERR_OPERATIONFAILED: S :='LINEERR_OPERATIONFAILED';

LINEERR_OPERATIONUNAVAIL: S :=

'LINEERR_OPERATIONUNAVAIL';

LINEERR_RATEUNAVAIL: S := 'LINEERR_RATEUNAVAIL';

LINEERR_RESOURCEUNAVAIL: S :='LINEERR_RESOURCEUNAVAIL';

LINEERR_STRUCTURETOOSMALL: S :=

'LINEERR_STRUCTURETOOSMALL';

LINEERR_UNINITIALIZED: S := 'LINEERR_UNINITIALIZED';

LINEERR_USERUSERINFOTOOBIG: S :=

'LINEERR_USERUSERINFOTOOBIG';

else
S := 'LineMakeCall returned an unknown value (' +

IntToStr(ErrNo) + ')';

end;
Memo.Lines.Add('LineMakeCall reports: ' + S);

end;

function TForm1.ShutdownCallManager: Boolean;

var
S: string;

begin
Result := False;

case LineShutdown(FLineApp) of
0: begin

S := 'success!';

{ LineShutDown performs the equivalent of LineClose
so set the line flag to False. }

FLineOpen := False;

btnHangup.Enabled := False; // Disable hangup button.
btnDial.Enabled := True; // Enable dial button.
Result := True;

end;
LINEERR_INVALAPPHANDLE: S :='LINEERR_INVALAPPHANDLE';

LINEERR_NOMEM: S :='LINEERR_NOMEM';

LINEERR_UNINITIALIZED: S :='LINEERR_UNINITIALIZED';

LINEERR_RESOURCEUNAVAIL: S :='LINEERR_RESOURCEUNAVAIL';

else
S := 'Unknown value';

end;
Memo.Lines.Add('LineShutDown reports: ' + S);

end;

end.

End Listing Two
37 July 1998 Delphi Informant

38 July 1998 Delphi Informant

Propel
A Powerful Tool for Code Re-use

New & Used

By Alan C. Moore, Ph.D.

Figure 1: Propel’s Feature
ticular feature you want to
Code re-use. What does it mean to you? Perhaps it’s Object Pascal’s under-
lying object-oriented structure, which allows you to easily create new

classes. Or it may be Delphi’s component architecture, which enhances rapid
application development. Object-Oriented Programming (OOP) and Rapid
Application Development (RAD) each have their advantages and disadvantages.
Is it possible to combine the best qualities of
each approach? Propel, from Nevrona
Designs, attempts to do that. It’s built on a
solid, object-oriented structure, yet, at the
same time, supports rapid development with
its convenient component editors. More
importantly, it provides a giant step forward
in code re-use for Delphi programmers. To
make the best use of the product, however,
you’ll need to have at least a basic under-
standing of OOP. What exactly does Propel
do and how?
 selection dialog box, where you choose the par-
 use.
Propel and Features
The central concept of Propel is the Feature
— a special binding of code to components
and/or components to each other. What
makes this binding so special is the level of
flexibility it provides. (In fact, I wish they
had not used the term Feature, but some-
thing like FlexComponent instead. Feature
is such a commonly used term in software
development!)

The best way to describe Propel is to com-
pare it with other tools available in Delphi
and from third parties. Consider normal
components; you usually just drop them onto
a form and set their properties. But what if
you need additional properties to enhance or
expand their functionality? Then you general-
ly have to subclass the component and add
the new properties. Or what if you want to
mimic a component’s OnClick behavior in
another component? Again, you’re faced with
the prospect of subclassing, or pasting the
event code, each time you use that compo-
nent. With Propel, you can accomplish both
of these tasks without having to derive a new
component or write a lot of code.

We could also consider the situation with
compound components. Sometimes called

 2: A form with four features selected.

New & Used

3: The Feature Instance dialog box, where you establish the connec-
tween controls and control their behavior.

4: The same application as shown in Figure 2, at run time.
super components, these complexes are built by
dropping several components on a Panel, exposing
some of their properties, defining certain internal
relationships, and compiling the whole thing as a
single component. Tools like the Component
Development Kit (CDK) from Eagle Software
make this easy to accomplish. However, compound
components have several limitations: 1) If you
wish to expose certain additional properties later,
you are back to square one — creating a new com-
pound component; 2) you cannot change the spa-
tial relationship of the sub-components once the
compound component has been created; and 3)
you must use all of the sub-component.

With Propel, all of this has changed dramatically.
You have complete control over all the compo-
nents included in a Feature: control over their
visual placement, connections to other compo-
nents and events, and whether they appear at all.
There are two aspects of Propel that I will exam-
ine in depth: using and creating Features.

Using Features
Using Propel’s Features is very easy. In fact, it’s
quite similar to using an ordinary component. You
simply drop a TFeature component on a form,
click on its icon to bring up the Feature selection
dialog box (see Figure 1), and select the particular
Feature you want to use. In one of the test appli-
cations I wrote, I dropped four TFeature compo-
nents on a form and set each one to a different
Feature. These Features, among a dozen or so that
come with Propel, include one that paints the
main form with a gradient, a dual-listbox Feature,
and two others that enable incremental keyboard
selections within a combobox and a listbox.
Figure 2 shows the form once all the Features have
been selected.

Once you’ve selected your Feature, you control its
behavior in the Feature Instance dialog box (see
Figure 3). Here, you establish the connections
between controls and events; you also can select
which controls will be generated on your applica-
tion’s form. (Figure 4 shows the same application at
run time, as I am about to click on the down arrow,
moving to the next entry in the combo box.)

Propel can automatically generate all compo-
nents of a Feature (similar to component tem-
plates but without the duplicate code). You have
a lot of control over these components. Those
which are part of a Feature instance are complete-
ly normal components; unlike subcomponents of a
compound component, you can modify their properties,
events and position. You can also define such connector
components to be optional so you don’t have to use the
entire Feature’s contents.

Figure

Figure
tions be

Figure
39 July 1998 Delphi Informant
Because the TFeature component is similar to what Ray
Lischner calls a metacomponent, it knows about all the
other components on a form. So, when you add more
components to a form and bring up the Feature Instance
dialog box again, the new component(s) will be listed

New & Used

A new status bar feature based on several Raize Components.

The first page of the Feature Definition dialog box is where you
ure’s icon and descriptions.
there, ready to be connected to the functionality of the
particular Feature.

But Features are much more powerful than any metacompo-
nent I’ve seen. For example, you can add special properties
that are related to the components in the Feature, setting
them in the object inspector as you would any property.
With array connectors (which we’ll be discussing later), you
can connect a Feature component to a whole series of com-
ponents on the form.

Propel’s Own Features
As we’ve already seen, Propel comes with a powerful col-
lection of Features that help to demonstrate the capabili-
ties of the product. Some are quite useful, while a few fall
into the novelty category. The dual-listbox Feature (again,
see Figure 2) provides enhanced communication between
two listboxes, enabling moving a single or groups of file(s)
between them. As we’ve seen already, a listbox Feature
facilitates incremental search. Others extend the listbox
and the combo box in similar ways.

There are three database-related Features: one provides a
means for you to use your own custom buttons,
another adds special speed buttons, and a third
introduces a really nice bookmarking Feature. There
are other interesting Features. One enables a self-
drawn graphical listbox; another paints a gradient as
the main form’s background (see Figure 4). There
are several more useful Features and a few amusing
ones. I found the hint Feature particularly useful.

Using Features is quite easy and the collection
included with Propel is excellent, but what about
creating new ones?

Creating Features
Remarkably, creating a new Feature is not much
more difficult than using existing Features. The
basic steps are as follows:

Create a new form and give it a unique name
(required).
Drop a TFeatureDef component on the form.
Write the registration code (handled automati-
cally in Delphi 2, Delphi 3, and C++Builder).
Add components to the form and name them.
Add default settings of components to the
Form’s Feature OnCreate handler.
Write component event code to enable the
Feature’s functionality.
Define the Feature in the Feature Definition
Editor.

The Feature definition form looks like a regu-
lar Delphi form. Figure 5 shows an example
of a Feature I defined, a status bar with connec-
tions to controls on the form. (In this case, I
wanted to design a reusable status bar, based
on several of the components from the Raize

Figure 5:

Figure 6:
set a Feat
40 July 1998 Delphi Informant
Components.) Note the Def component in the top-left
corner. As we’ll see, this single component controls the
definition of this Feature. There are two array connectors
on the form, one to send fly-over hints from any compo-
nent on the form to the left-most pane on the status panel,
the other to control the graphic that will display in the
right-most pane.

When you double-click on the Def component, the multi-
page dialog box shown in Figure 6 comes up. In the first
page, you can provide your Feature with its own icon, a
short and longer description, and the page on which it will
appear in the TFeature component. The second page (see
Figure 7) allows you to define the various connector com-
ponents that are at the heart of your Feature’s functionali-
ty. If you want, you can provide a short and full descrip-
tion for each connector component.

The last page of the Feature Definition dialog box (see
Figure 8) allows you to define new properties to enhance
the functionality of your Feature. In this case, I needed to
be able to store specific strings and bitmaps for the glyph
status pane (the one at the far right).

41 July 1998 Delphi Informant

Figure 7: The second page of the Feature Definition dialog box allo
to define connector components.

New & Used

Figure 8: The last page of the Feature Definition dialog box allows
define new properties for your Feature.
According to Propel terminol-
ogy, when components are
added to a Feature form, they
are referred to as “connectors”
because they play such an
active and flexible role. As I
indicated previously, connec-
tor components are not limit-
ed to one-to-one relationships
with the components on the
form. Propel includes two spe-
cial kinds of connectors: array
and union. Array connectors
allow you to connect one type
of functionality to a whole
series of components; union
connectors allow you to
choose the one you want to
enable from a group of related
components.

You can also create “array
properties,” which allow you
to add new properties to a
Feature and then apply those properties to a
whole series of components on a form. Propel
also gives you the ability to easily intercept and
react to Windows messages without deriving a
new component. Not only can you add new
properties (as we’ve been discussing), you can
also add new events and methods. But what
about distributing your Features to other devel-
opers — some of whom may not own Propel?
That’s also possible, but there’s a caveat: it’s
rather involved, and the documentation needs to
be improved.

Distributing Propel Features
To use Features in a system where Propel is not
installed, you must save Propel Features as sepa-
rate components called customized Feature com-
ponents. Such Features require the run-time ver-
sion of Propel, which you can distribute royalty-
free. This is also an alternate way of using
Features, even with Propel installed. Instead of
dropping the main Feature component on a
form and then selecting your Feature from the
choices there, you can drop your new Feature
component on a form and you’re ready to define
its properties.

Usually, it takes very little additional work to
write a customized Feature component. First,
you develop the Feature itself as previously
described. Then, in the same unit, you derive an
instance of TCustomFeature and override its
Create constructor. In the body of the imple-
mentation of that constructor, you need to
include a statement like this:

FeatureFormClass := 'MyFeatureForm';

In other cases, things can get trickier. Earlier, I described a sta-
tus-bar Feature I developed based on Raize Components. I
intended to create a new version of this that I could install on
the Component palette. However, because it included two
array-connectors, I had to take additional steps. Examine the
example form (available for download; see end of article for
details), paying particular attention to the comments. Note
that each of the published properties in the Feature (form) class
must be included in the custom Feature class. Because these
properties are associated with array connectors, this step is nec-
essary for them to appear with each actual component with
which the array connector is associated. I also had to create two
instances of the TFeatureArrayPropObj class to be a container
for the published properties.

Conclusion — Successful Code Re-use
The President of Nevrona Designs, Jim Gunkel, shared his three
criteria for a successful code re-use system with me. It must be:

easy to save to a library;
easy to retrieve from the library; and
flexible and adaptable to a variety of programming situations.

ws you

you to
Propel is a powerful code re-use tool from
Nevrona Designs that eliminates much of
the need for the more cumbersome code
re-use strategies, such as component cre-
ation and cutting and pasting of code. Its
special components, called Features, are
much more flexible than ordinary compo-
nents, including compound components.
Propel has several intuitive dialog boxes
for creating new Features and using exist-
ing ones. It includes a substantial collec-
tion of built-in Features and supports all
versions of Delphi and C++Builder. Propel
also includes full source code, a manual,
an integrated Help file, and a 30-day
money-back guarantee.

Nevrona Designs
1930 S. Alma School #B-214
Mesa, AZ 85210-3041

Phone: (888) 776-4765 or (602) 491-5492
Fax: (602) 530-4823
E-Mail: order@nevrona.com
Web Site: http://www.nevrona.com
Price: US$199 plus shipping/handling

http://www.nevrona.com

New & Used
In my opinion, Propel meets these criteria very well. It is a
very well designed and implemented tool for code re-use.
It will be especially useful to consultants and independent
developers who tend to write a large number of similar
applications. As a bonus, the full source code for the main
Propel engine itself and the sample Features is included.
Code junkies (like this reviewer) will take delight in study-
ing these files and learning new Object Pascal tricks.

The one area where I encountered some problems was the
documentation. While the first part of the manual is well
written and clearly explains the purpose of the product,
the latter sections, which introduce some of the more
advanced topics, are in need of expansion. The entire man-
ual could benefit from a thorough editing, as there are a
number of errors and awkward sentences. Nevertheless, I
highly recommend this product. The very problems I men-
tioned gave me a chance to test the technical support,
which I found very helpful. By all means, visit the
Nevrona Web site at http://www.nevrona.com, download
the demo files and free Feature files, and find out for your-
self. I think you’ll be pleasantly surprised. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\JUL\DI9807NU.

Alan Moore is a Professor of Music at Kentucky State University, specializing in
music composition and music theory. He has been developing education-related
applications with the Borland languages for more than 10 years. He has pub-
lished a number of articles in various technical journals. Using Delphi, he spe-
cializes in writing custom components and implementing multimedia capabilities
in applications, particularly sound and music. You can reach Alan on the Internet
at acmdoc@aol.com.
42 July 1998 Delphi Informant

http://www.nevrona.com

Delphi Will Survive

From the Trenches
Directions / Commentary
With the advent of Delphi 4, this month seems like a good time to share my thoughts with you regarding
why, in the words of Gloria Gaynor, “[Delphi] will survive.” Feel free to share these arguments with your

Microsoft friends and zealots who use the Delphi-won’t-be-around-for-another-year excuse to try and justify
why they won’t even look at, much less use, the best development tool around. That particular line of reason-
ing — which I’ve heard since Delphi 1 — makes increasingly less sense as each new version comes out.
INPRISE is profitable. INPRISE has
now been profitable for three consecu-
tive quarters. This is important because
the return to profitability under Del
Yocam and the new management team
reinforces the industry’s assertion that
there is room for more than one soft-
ware company in this world.

INPRISE isn’t a small company. By
arguing that INPRISE won’t be around
because it is a “small company,” you
must first define a “small company.” Is
INPRISE a small company? If you con-
sider a company that had revenues of
$43,000,000 last quarter to be small,
then it is. Somehow, we must come up
with a magic number that shows which
companies are small. The only thing we
do know is that Microsoft is the largest,
so they are not small. Anyone else,
however, can suffer from this label.

History. Even mentioning the name
Phillipe Kahn evokes strong reaction
within the industry. Nevertheless, his
aggressive, entrepreneurial attitude is
what really put Borland on the map.
Today, INPRISE has clearly established
itself as the innovator of software devel-
opment tools, especially as it pertains to
the enterprise market. And with the
acquisition of Visigenic, it doesn’t look
like INPRISE will relinquish that title
easily. This acquisition positions
INPRISE to spur the growth of distrib-
uted objects today much as it did with
OOP nine years ago.

Compare Pascal to C++. I don’t expect
to change anyone’s mind about which
43 July 1998 Delphi Informant
language is “best.” However, there’s
nothing you can do in C++ that you
cannot do in Pascal. The only differ-
ences are syntax and convention. If
there is a specific feature you find useful
in C++ that isn’t in Pascal, you can at
least find another way to represent it.

Compare Pascal to BASIC. BASIC isn’t
a true OOP language. No matter how
you try, you can’t redefine OOP to
exclude inheritance. Inheritance is every
bit as important to OOP as polymor-
phism and encapsulation. You also might
recall the transition from BASIC to pro-
cedural, structured languages like Pascal
and C some 15 years ago, as it became
clear that C and Pascal could better sup-
port a robust development effort. BASIC
has grown up considerably since then,
but it still has its roots as a Beginner’s
All-purpose Symbolic Instruction Code.

Community support. Try to get the
same level of support on any Microsoft
product that you can for Delphi. The
sense of community that many Delphi
users exhibit is phenomenal. The
Borland newsgroups are a perfect exam-
ple of this. People participating in these
newsgroups are eager to help and share
information with others.

Delphi per se. Delphi is a viable prod-
uct all by itself. A development envi-
ronment that sells over 1,000,000
copies validates this claim, i.e. even if
INPRISE did go under, someone
would definitely recover Delphi from
the flotsam. After all, a tool that
makes so many developers so produc-
tive must survive. I know of one com-
pany in the northwest that could give
Delphi a good home. Wouldn’t that be
the ultimate irony? I’d love to see the
Delphi-bashers stop, turn on a dime,
and say they loved Delphi all along.
Who knows?

The best tool. Finally, let me address
the general process of selecting a
development tool. There are no cer-
tainties in this world. If the
Department of Justice decided that
Microsoft had an unfair competitive
advantage, they could effectively close
Microsoft down, or at least break
them up as they did with AT&T. I
certainly don’t agree with this, but it is
a fact. And if people are going to use a
logical approach to selecting their soft-
ware development tool, they should
factor this into the equation. After all,
wouldn’t that mean that “Microsoft-
might-not-be-there-next-year,” or that
“Microsoft-is-a-small-company?”

If someone selects a development tool
other than Delphi based on technical
merit, fine, but to ignore Delphi for other
reasons is illogical. And after all, isn’t logic
the basis of software development? ∆

— Dan Miser

Dan Miser is a Design Architect for
Stratagem, a consulting company in
Milwaukee. He has been a Borland
Certified Client/Server Developer since
1996, and is a frequent contributor to
Delphi Informant. You can contact him
at http://www.execpc.com/~dmiser.

http://www.execpc.com/~dmiser

File | New
Directions / Commentary

Quality First
A Challenge to RAD?
L ast summer, I received a fascinating piece of e-mail from Glenn Crouch, a developer from Western Australia who is
also a fellow moderator for the COBB Group’s DDJ-Thread Internet list server. The message summarized an

approach to programming — called the “Quality First Model”— articulated by Bertrand Meyer (IEEE’s Computer
Magazine, May, 1997). At the time, I filed the message for later consideration. When I recently encountered it again
during a search for something else, it occurred to me that it might be of interest to readers.
My main question was “What relationship,
if any, does Quality First have to RAD
(Rapid Application Development)?” As we’ll
see, it’s highly critical of the “speed at any
cost” philosophy, and, as Steve McConnell
points out in his Rapid Development : Taming
Wild Software Schedules [Microsoft Press,
1996], provides sound recommendations
that will save us time in the long run.

The key concept of the Quality First Model
seems to be quality in the beginning, quality
in the middle, and quality at the end. Meyer
is very careful to differentiate between quality
and perfection. If our goal is quality, we can
be reasonably confident our efforts will meet
with success; if we become fixated on some
concept of “perfection,” we may find it diffi-
cult to “produce results in [our] lifetime.”

Quality in the beginning. Quality in the
beginning means being mindful of the funda-
mentals, as Steve McConnell recommends. It
also means avoiding sloppiness. Delphi is the
preeminent RAD tool for Windows develop-
ers. But it’s a two-edged sword. It’s a visual
development environment that can greatly
enhance our productivity, but its ease-of-use
can lull us into a sense of complacency and
laziness that can undermine that productivity.

So, we need to be vigilant and avoid sloppiness.
We could be sloppy in developing the logic of
our application’s flow. While that logic can cer-
tainly change, it is worth focusing on in the
beginning. We could also be sloppy in dealing
with bugs, and here Meyer has some practical
advice: If we’re working in a team environ-
ment, we shouldn’t rely on others — especially
the QA team — to clean up our messes.

The essence of Meyer’s Quality First atti-
tude can be summed up in his statement:
44 July 1998 Delphi Informant
“Build it so you can trust it. Then don’t
trust it.” So how should we begin? Meyer
recommends beginning with the cosmetics,
by which he means using correct syntax,
writing readable and well-commented
code, and sticking to a consistent coding
style. Quality in the beginning means to
“get everything right from the start and fix
it immediately if it is not.” Quality comes
first; functionality comes with time.

Quality in the middle. It’s natural for us
to want our applications to be feature-rich,
but there’s a danger in trying to do too
much. McConnell recommends critically
evaluating every proposed new feature.
Eliminating superfluous features can
enable us to do a better job with what is
really required. As we build our applica-
tions and add needed functionality, we
must remain focused on quality. Meyer’s
advice: Compile often, execute as soon as
possible, and execute with full error check-
ing turned on. We’re going to make mis-
takes, and we’re going to create bugs. It’s
better to fix them earlier than later.

In dealing with bugs, Meyer endorses the strat-
egy put forth by Tom Van Vleck in his Web
article: “Three Questions about Each Bug You
Find” (see http://www.lilli.com/threeq.html).
The first question is: “Is this mistake
somewhere else?” On occasion, I still find
myself repeating the same type of error.
The second question, “What bug is hidden
behind this one?”, recognizes that one bug
can prevent a whole section of code from
executing. It’s possible that more bugs may
be lurking. The third question, “What
should I do to prevent bugs like this?”, can
lead to some productivity-enhancing steps,
such as acquiring and/or developing tools
to help trap common errors.
As we continue to add functionality,
Meyer recommends that we “always have a
working system” so we can demonstrate
the current state of the project to col-
leagues or potential customers. He also
stresses the importance of early testing.
An essential aspect of testing is making
sure the program is robust. As he puts it,
the job of our testers is to “displease us.”
We must make certain that even the most
novice among users can run our applica-
tion without getting hopelessly lost or
causing it to crash.

Quality in the end. If there’s quality in
the beginning, and if we stay focused on
quality as we progress, there will be quali-
ty in the end. As Meyer explains, the
Quality First Model transforms the ques-
tion “Can we ship now?” into “Does it do
enough to impress the marketplace?”
Commitment to quality is a constant; the
main variable becomes functionality.
Quality First doesn’t contradict RAD, par-
ticularly as articulated by McConnell. By
keeping us focused on robustness and fix-
ing errors early, it increases our productiv-
ity and makes RAD workable. ∆

— Alan C. Moore, Ph.D.

Alan Moore is a Professor of Music at
Kentucky State University, specializing in
music composition and music theory. He has
been developing education-related applica-
tions with the Borland languages for more
than 10 years. He has published a number
of articles in various technical journals.
Using Delphi, he specializes in writing cus-
tom components and implementing multi-
media capabilities in applications, particu-
larly sound and music. You can reach Alan
via e-mail at acmdoc@aol.com.

http://www.lilli.com/threeq.html

	Table of Contents
	Delphi Tools
	Extended Systems Announces Advantage Database Server 5.0
	Wise Solutions Announces Wise Installation System 6.0
	Moss Micro Announces ActiveSales 3.0
	American Cybernetics Announces Multi-Edit 8
	ZieglerSoft Releases ZieglerCollection one
	Devont Ships NWLib

	Newsline
	Borland Becomes INPRISE Corporation
	Ensemble Systems Links Rational Rose to Delphi and JBuilder
	INPRISE Introduces AppCenter
	INPRISE to Expand Research and Development Activities in Singapore

	On the Cover: Delphi 4
	IDE Changes
	VCL Changes
	Database Enhancements
	Multi-tier Enhancements
	Language Enhancements
	Conclusion

	On the 'Net: WinSock 2
	SFTP, or the Poor Man’s FTP
	The Front End
	Handling Events on a Thread
	Getting the Goods
	SFTPServer
	Using the Example SFTPClient and SFTPServer Applications
	Looking Ahead
	Begin Listing One — SFTP Client Data Thread Unit

	Sound + Vision: Palettes Made Plain
	Introducing Palettes
	Palettes and Microsoft Windows
	Palette Handles
	Delphi and Palettes
	Palette Tricks
	Conclusion

	Distributed Delphi: COM Callbacks
	Connection Points Objects and Interfaces
	Implementing the Server
	Implementing the Client
	Conclusion

	The API Calls: Delphi and TAPI
	Windows 95 Communications APIs
	Getting Started
	The Hard Way
	Step 1: Initializing TAPI
	Step 2: Placing the Call
	Step 3: Handling the Callbacks
	Step 4: Hanging Up and Disposing of Resources
	The Demonstration Project and a Preview
	References
	Project JEDI
	Canonical Address Formats
	Begin Listing Two — TAPI Example Application

	New & Used: Propel
	Propel and Features
	Using Features
	Propel’s Own Features
	Creating Features
	Distributing Propel Features
	Conclusion — Successful Code Re-use

	From the Trenches: Delphi Will Survive
	File | New: Quality First

